Template:Radiation condition for diffracted potential: Difference between revisions
From WikiWaves
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<center><math> | <center><math> | ||
\frac{\partial}{\partial x} \left(\phi^{\mathrm{D}}-\phi^{\rm | \frac{\partial}{\partial x} \left(\phi^{\mathrm{D}}-\phi^{\rm | ||
I} \right) \pm | I} \right) \pm k_0\left( \phi^{\mathrm{D}}-\phi^{\rm I}\right) | ||
= 0 | = 0 | ||
,\,\,\mathrm{as} | ,\,\,\mathrm{as} | ||
\,\,x\rightarrow | \,\,x\rightarrow\infty. | ||
</math></center> | </math></center> | ||
{{incident plane wave 2d definition}} | |||
Latest revision as of 03:22, 26 November 2009
[math]\displaystyle{ \phi^{\mathrm{D}} }[/math] satisfies the Sommerfeld Radiation Condition
[math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,
where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and