Eigenfunction Matching for a Finite Change in Depth: Difference between revisions
No edit summary |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{ | {{complete pages}} | ||
== Introduction == | == Introduction == | ||
The problem consists of a region | The problem consists of a region of free water surface with depth <math>h</math> except between | ||
and | <math>-L</math> and <math>L</math> where the depth is <math>d</math>. | ||
The problem with a semi-infinite change in depth is treated in | |||
[[Eigenfunction Matching for a Semi-Infinite Change in Depth]] | [[Eigenfunction Matching for a Semi-Infinite Change in Depth]] | ||
== Governing Equations == | |||
We begin with the [[Frequency Domain Problem]] for a submerged dock which occupies | |||
the region <math>x>0</math> (we assume <math>e^{-\mathrm{i}\omega t}</math> time dependence). | |||
The depth of is constant <math>h</math> for <math>x<0</math> and | |||
constant <math>d</math> for <math>x>0</math>. | |||
The <math>z</math>-direction points vertically | |||
upward with the water surface at <math>z=0</math>. | |||
The boundary value problem can therefore be expressed as | |||
<center><math> | |||
\Delta\phi=0, \,\, -h<z<0, \,\, x<-L,\,x>L | |||
</math></center> | |||
<center><math> | |||
\Delta\phi=0, \,\, -d<z<0, \,\, -L<x<L | |||
</math></center> | |||
<center><math> | |||
\partial_z\phi=\alpha\phi, \,\, z=0, | |||
</math></center> | |||
<center><math> | |||
\partial_x\phi=0, \,\, -d<z<-h,\,x=\pm L, | |||
</math></center> | |||
<center><math> | |||
\partial_z\phi=0, \,\, z=-h,\, x<-L,\,x>L | |||
</math></center> | |||
<center><math> | |||
\partial_z\phi=0, \,\, z=-d,\, -L<x<L | |||
</math></center> | |||
We must also apply the [[Sommerfeld Radiation Condition]] | |||
as <math>|x|\rightarrow\infty</math>. This essentially implies | |||
that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave | |||
and a wave propagating away. | |||
== Solution Method == | |||
We use [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] in the two regions, <math>x<0</math> | |||
and <math>x>0</math>. | |||
{{separation of variables in two dimensions}} | |||
{{separation of variables for a free surface}} | |||
=== Inner product between free surface and dock modes === | |||
<center><math> | |||
B_{mn} = \int\nolimits_{-h}^{0}\phi_{m}^{d}(z)\phi_{n}^{h}(z) \mathrm{d} z | |||
</math></center> | |||
where | |||
<center><math> | |||
B_{mn}= \int\nolimits_{-h}^{0} \frac{\cos(k_{m}^{h}(z+h))\cos(k_{n}^{d}(z+d))}{\cos(k_{m}h)\cos(k_{n}d)} \mathrm{d} z | |||
=\frac{k_{m}^{h}\sin(k_{m}^{d} h)\cos(k_{n}^{d}h)-k_{n}^{d}\cos(k_{m}^{h} h)\sin(k_{n}^{d}h)} | |||
{\cos(k_{m}h)\cos(k_{n}d)({k_{m}^{d}}^{2}-{k_{n}^{d}}^{2})} | |||
</math></center> | |||
== Governing Equations == | == Governing Equations == | ||
Line 86: | Line 141: | ||
<center> | <center> | ||
<math> | <math> | ||
A_{0}\delta_{ | A_{0}\delta_{0n}+a_{n}^{s}A_{n}^{h} | ||
=\sum_{ | =\sum_{m=0}^{\infty}b_{m}^{s}B_{mn} | ||
</math> | </math> | ||
</center> | </center> | ||
Line 93: | Line 148: | ||
<center> | <center> | ||
<math> | <math> | ||
-k_{0} | -k_{0}^{h}B_{n0} + \sum_{m=0}^{\infty} a_{m}^{s}k_{m}^{h} B_{nm} | ||
=- | = -b_{n}^{s}k_{n}^{d}\tanh(k_{n}^{d}L) A_{n}^{d} | ||
</math> | </math> | ||
</center> | </center> | ||
Line 160: | Line 215: | ||
== Matlab Code == | == Matlab Code == | ||
A program to calculate the coefficients for the semi-infinite dock problems can be found here | A program to calculate the coefficients for the semi-infinite dock problems can be found here | ||
{{ | {{finite_change_in_depth code}} | ||
=== Additional code === | === Additional code === |
Latest revision as of 08:46, 21 June 2011
Introduction
The problem consists of a region of free water surface with depth [math]\displaystyle{ h }[/math] except between [math]\displaystyle{ -L }[/math] and [math]\displaystyle{ L }[/math] where the depth is [math]\displaystyle{ d }[/math]. The problem with a semi-infinite change in depth is treated in Eigenfunction Matching for a Semi-Infinite Change in Depth
Governing Equations
We begin with the Frequency Domain Problem for a submerged dock which occupies the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{-\mathrm{i}\omega t} }[/math] time dependence). The depth of is constant [math]\displaystyle{ h }[/math] for [math]\displaystyle{ x\lt 0 }[/math] and constant [math]\displaystyle{ d }[/math] for [math]\displaystyle{ x\gt 0 }[/math]. The [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math]. The boundary value problem can therefore be expressed as
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.
Solution Method
We use separation of variables in the two regions, [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math].
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
Separation of variables for a free surface
We use separation of variables
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
The separation of variables equation for deriving free surface eigenfunctions is as follows:
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]
We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:
which is the Dispersion Relation for a Free Surface
The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations
[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]
to arrive at the dispersion relation
[math]\displaystyle{ \alpha = k\tanh kh. }[/math]
We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].
Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as
[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]
Inner product between free surface and dock modes
where
Governing Equations
We begin with the Frequency Domain Problem for a submerged dock which occupies the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The depth of is constant [math]\displaystyle{ h }[/math] for [math]\displaystyle{ x\lt -L }[/math] and [math]\displaystyle{ x\gt L }[/math] and constant [math]\displaystyle{ d }[/math] for [math]\displaystyle{ -L\lt x\gt L }[/math]. The [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math]. The boundary value problem can therefore be expressed as
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.
Solution Method
We use separation of variables in the two regions, [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math].
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
Separation of variables for a free surface
We use separation of variables
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
The separation of variables equation for deriving free surface eigenfunctions is as follows:
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]
We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:
which is the Dispersion Relation for a Free Surface
The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations
[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]
to arrive at the dispersion relation
[math]\displaystyle{ \alpha = k\tanh kh. }[/math]
We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].
Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as
[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]
Solution using Symmetry
The finite dock problem is symmetric about the line [math]\displaystyle{ x=0 }[/math] and this allows us to solve the problem using symmetry. This method is numerically more efficient and requires only slight modification of the code for Eigenfunction Matching for a Semi-Infinite Dock, the developed theory here is very close to the semi-infinite solution. We decompose the solution into a symmetric and an anti-symmetric part as is described in Symmetry in Two Dimensions
Symmetric solution
The symmetric potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{0}^{h}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}^{h}(x+L)}\phi_{m}^{h}(z) , \;\;x\lt -L }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m}^{s} \frac{\cosh k_{m}^{d} x}{\cosh k_{m}^{d} L} \phi_{m}^{d}(z), \;\;-L\lt x\lt 0 }[/math]
where [math]\displaystyle{ a_{m}^{s} }[/math] and [math]\displaystyle{ b_{m}^{s} }[/math] are the coefficients of the potential in the two regions.
For the first equation we multiply both sides by [math]\displaystyle{ \phi_{n}^{h}(z) \, }[/math] and integrate from [math]\displaystyle{ -h }[/math] and for the second equation we multiply both sides by [math]\displaystyle{ \phi_{n}^{d}(z) \, }[/math] and integrate from [math]\displaystyle{ -d }[/math]. This gives us
[math]\displaystyle{ A_{0}\delta_{0n}+a_{n}^{s}A_{n}^{h} =\sum_{m=0}^{\infty}b_{m}^{s}B_{mn} }[/math]
and
[math]\displaystyle{ -k_{0}^{h}B_{n0} + \sum_{m=0}^{\infty} a_{m}^{s}k_{m}^{h} B_{nm} = -b_{n}^{s}k_{n}^{d}\tanh(k_{n}^{d}L) A_{n}^{d} }[/math]
(for full details of this derivation see Eigenfunction Matching for a Semi-Infinite Change in Depth)
Anti-symmetric solution
The anti-symmetric potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{m}^{h}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{a}e^{k_{m}^{h}(x+L)}\phi_{m}(z) , \;\;x\lt -L }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m}^{a} \frac{\sinh k_{m}^{h} x}{-\sinh k_{m}^{h} L}\phi_{m}(z), \;\;-L\lt x\lt 0 }[/math]
where [math]\displaystyle{ a_{m}^{a} }[/math] and [math]\displaystyle{ b_{m}^{a} }[/math] are the coefficients of the potential in the two regions. Note that the minus sign in the expression for the dock-covered region has been added so that each component is equal to one at [math]\displaystyle{ x=-L }[/math].
For the first equation we multiply both sides by [math]\displaystyle{ \phi_{n}^{h}(z) \, }[/math] and integrate from [math]\displaystyle{ -h }[/math] and for the second equation we multiply both sides by [math]\displaystyle{ \phi_{n}^{d}(z) \, }[/math] and integrate from [math]\displaystyle{ -d }[/math]. This gives us
[math]\displaystyle{ A_{0}^{h}\delta_{0n}+a_{n}^{a}A_{n}^{h} =\sum_{m=0}^{\infty}b_{m}^{a}B_{mn} }[/math]
and
[math]\displaystyle{ -k_{0}^{h}B_{n0} + \sum_{m=0}^{\infty} a_{m}^{a}k_{m}^{h} B_{nm} = -b_{n}^{a}k_{n}^{d}\coth(k_{n}^{d}L) A_{n}^{d} }[/math]
(for full details of this derivation see Eigenfunction Matching for a Semi-Infinite Change in Depth)
Solution to the original problem
We can now reconstruct the potential for the finite dock from the two previous symmetric and anti-symmetric solution as explained in Symmetry in Two Dimensions. The amplitude in the left open-water region is simply obtained by the superposition principle
[math]\displaystyle{ a_{m} = \frac{1}{2}\left(a_{m}^{s}+a_{m}^{a}\right) }[/math]
[math]\displaystyle{ d_{m} = \frac{1}{2}\left(a_{m}^{s}-a_{m}^{a}\right) }[/math]
Note the formulae for [math]\displaystyle{ b_m }[/math] and [math]\displaystyle{ c_m }[/math] are more complicated but can be derived with some work.
Matlab Code
A program to calculate the coefficients for the semi-infinite dock problems can be found here finite_change_in_depth.m
Additional code
This program requires