Introduction to the Inverse Scattering Transform: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{nonlinear waves course | {{nonlinear waves course | ||
| chapter title = Introduction to the Inverse Scattering Transform | | chapter title = Introduction to the Inverse Scattering Transform | ||
| next chapter = [[ | | next chapter = [[Properties of the Linear Schrodinger Equation]] | ||
| previous chapter = [[Conservation Laws for the KdV]] | | previous chapter = [[Conservation Laws for the KdV]] | ||
}} | }} | ||
= Miura transform = | |||
The inverse scattering transformation gives a way to solve the KdV equation | The inverse scattering transformation gives a way to solve the KdV equation | ||
Line 12: | Line 12: | ||
Fourier transformation, except it works for a non linear equation. We want to | Fourier transformation, except it works for a non linear equation. We want to | ||
be able to solve | be able to solve | ||
<center><math>\begin{ | <center><math>\begin{matrix} | ||
\partial_{t}u+6u\partial_{x}u+\partial_{x}^{3}u & =0\\ | \partial_{t}u+6u\partial_{x}u+\partial_{x}^{3}u & =0\\ | ||
u(x,0) & =f\left( x\right) | u(x,0) & =f\left( x\right) | ||
\end{ | \end{matrix}</math></center> | ||
with <math>\left\vert u\right\vert \rightarrow0</math> as <math>x\rightarrow\pm\infty.</math> | with <math>\left\vert u\right\vert \rightarrow0</math> as <math>x\rightarrow\pm\infty.</math> | ||
The Miura transformation is given by | The Miura transformation is given by | ||
<center><math> | <center><math> | ||
u=v^{2} | u=-v^{2}-\partial_x v\, | ||
</math></center> | </math></center> | ||
and if <math>v</math> satisfies the mKdV | and if <math>v</math> satisfies the mKdV | ||
Line 28: | Line 28: | ||
then <math>u</math> satisfies the KdV (but not vice versa). We can think about the Miura | then <math>u</math> satisfies the KdV (but not vice versa). We can think about the Miura | ||
transformation as being a nonlinear ODE solving for <math>v</math> given <math>u.</math> This | transformation as being a nonlinear ODE solving for <math>v</math> given <math>u.</math> This | ||
nonlinear ODE is also known as the Riccati equation and there is a well | nonlinear ODE is also known as the Riccati equation and there is a well known | ||
transformation which linearises this equation. It we write | transformation which linearises this equation. It we write | ||
<center><math> | <center><math> | ||
Line 46: | Line 46: | ||
in the inverse scattering transformation. Note that this is Schrodinger's equation. | in the inverse scattering transformation. Note that this is Schrodinger's equation. | ||
== | = Lax Pair = | ||
A powerful way to study the KdV equation is via the idea of a '''Lax pair'''. | |||
A Lax pair consists of two linear operators <math> L </math> and <math> P </math> such that the KdV equation is equivalent to the so-called '''Lax equation''': | |||
:<math> \frac{dL}{dt} = [P, L] = PL - LP </math> | |||
For the KdV equation, a classical Lax pair is: | |||
:<math> L = -\partial_x^2 + u(x,t) </math> | |||
:<math> P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u </math> | |||
These are differential operators acting on a function <math> \psi(x,t) </math>. The idea is that the evolution of <math> u(x,t) </math> is such that the operator <math> L </math> undergoes an isospectral deformation: its spectrum does not change in time. | |||
If <math> L\psi = \lambda \psi </math> and <math> \psi_t = P\psi </math>, then consistency requires: | |||
:<math> \frac{d}{dt}(L\psi) = L_t \psi + L\psi_t = PL\psi </math> | |||
so | |||
:<math> L_t = [P, L] </math> | |||
This is the Lax equation. | |||
=== Derivation of the KdV Equation from the Lax Pair === | |||
Let us now compute <math> [P, L] = PL - LP </math> explicitly, using: | |||
:<math> L = -\partial_x^2 + u </math> | |||
:<math> P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u </math> | |||
We compute the commutator acting on a test function <math> \psi </math>: | |||
'''Step 1:''' Compute <math> PL\psi </math>. | |||
<math> | |||
\begin{align} | |||
PL\psi &= P(-\psi_{xx} + u\psi) \\ | |||
&= -4\partial_x^3(-\psi_{xx} + u\psi) + 3u\partial_x(-\psi_{xx} + u\psi) + 3\partial_x u (-\psi_{xx} + u\psi) | |||
\end{align} | |||
</math> | |||
We compute each term: | |||
< | |||
\ | * <math> -4\partial_x^3(-\psi_{xx}) = -4\partial_x^3(-\psi_{xx}) = 4\psi_{xxxxx} </math> | ||
</math></ | * <math> -4\partial_x^3(u\psi) = -4[(u\psi)_{xxx}] </math> | ||
* <math> 3u\partial_x(-\psi_{xx}) = -3u\psi_{xxx} </math> | |||
* <math> 3u\partial_x(u\psi) = 3u(u\psi)_x = 3u^2\psi_x + 3uu_x\psi </math> | |||
* <math> 3\partial_x u (-\psi_{xx}) = -3u_x\psi_{xx} </math> | |||
* <math> 3\partial_x u (u\psi) = 3u_x u \psi + 3u u_x \psi = 6u u_x \psi </math> | |||
Add all the terms together: | |||
<math> | |||
\begin{align} | |||
PL\psi &= 4\psi_{xxxxx} -4(u\psi)_{xxx} -3u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi -3u_x\psi_{xx} + 6uu_x\psi | |||
\end{align} | |||
</math> | |||
'''Step 2:''' Compute <math> LP\psi </math>. | |||
<math> | |||
\begin{align} | |||
LP\psi &= (-\partial_x^2 + u)P\psi = -\partial_x^2(P\psi) + u P\psi | |||
\end{align} | |||
</math> | |||
We focus on the leading terms in <math> P\psi </math>: | |||
<math> | |||
P\psi = -4\psi_{xxx} + 3u\psi_x + 3u_x\psi | |||
</math> | |||
Then: | |||
<math> | |||
\begin{align} | |||
LP\psi &= -\partial_x^2(-4\psi_{xxx} + 3u\psi_x + 3u_x\psi) + u(-4\psi_{xxx} + 3u\psi_x + 3u_x\psi) \\ | |||
&= 4\psi_{xxxxx} -3\partial_x^2(u\psi_x) -3\partial_x^2(u_x\psi) -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi | |||
\end{align} | |||
</math> | |||
Compute: | |||
* <math> \partial_x^2(u\psi_x) = u_{xx}\psi_x + 2u_x\psi_{xx} + u\psi_{xxx} </math> | |||
* <math> \partial_x^2(u_x\psi) = u_{xxx}\psi + 2u_{xx}\psi_x + u_x\psi_{xx} </math> | |||
So: | |||
<math> | |||
\begin{align} | |||
LP\psi &= 4\psi_{xxxxx} -3(u_{xx}\psi_x + 2u_x\psi_{xx} + u\psi_{xxx}) -3(u_{xxx}\psi + 2u_{xx}\psi_x + u_x\psi_{xx}) \\ | |||
&\quad -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi | |||
\end{align} | |||
</math> | |||
Simplify: | |||
<math> | |||
\begin{align} | |||
LP\psi &= 4\psi_{xxxxx} -3u_{xx}\psi_x -6u_x\psi_{xx} -3u\psi_{xxx} -3u_{xxx}\psi -6u_{xx}\psi_x -3u_x\psi_{xx} \\ | |||
&\quad -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi | |||
\end{align} | |||
</math> | |||
Group like terms: | |||
* <math> -3u\psi_{xxx} -4u\psi_{xxx} = -7u\psi_{xxx} </math> | |||
* <math> -6u_x\psi_{xx} -3u_x\psi_{xx} = -9u_x\psi_{xx} </math> | |||
* <math> -3u_{xx}\psi_x -6u_{xx}\psi_x = -9u_{xx}\psi_x </math> | |||
* <math> -3u_{xxx}\psi </math> | |||
So: | |||
<math> | |||
\begin{align} | |||
LP\psi &= 4\psi_{xxxxx} -7u\psi_{xxx} -9u_x\psi_{xx} -9u_{xx}\psi_x -3u_{xxx}\psi + 3u^2\psi_x + 3uu_x\psi | |||
\end{align} | |||
</math> | |||
'''Step 3:''' Compute <math> [P, L]\psi = PL\psi - LP\psi </math> | |||
Subtract term by term (all <math> \psi </math> terms): | |||
* The <math> 4\psi_{xxxxx} </math> terms cancel. | |||
* Remaining terms: | |||
= | <math> | ||
\begin{align} | |||
[P, L]\psi &= (-4(u\psi)_{xxx} + 3u\psi_{xxx}) + 3u_x\psi_{xx} + 9u_{xx}\psi_x + 3u_{xxx}\psi + 6uu_x\psi | |||
\end{align} | |||
</math> | |||
Use: | |||
<math> (u\psi)_{xxx} = u_{xxx}\psi + 3u_{xx}\psi_x + 3u_x\psi_{xx} + u\psi_{xxx} </math> | |||
So: | |||
<math> | |||
\begin{align} | |||
-4(u\psi)_{xxx} &= -4(u_{xxx}\psi + 3u_{xx}\psi_x + 3u_x\psi_{xx} + u\psi_{xxx}) \\ | |||
&= -4u_{xxx}\psi -12u_{xx}\psi_x -12u_x\psi_{xx} -4u\psi_{xxx} | |||
\ | \end{align} | ||
</math> | |||
Now add everything: | |||
\ | <math> | ||
\begin{align} | |||
\ | [P,L]\psi &= (-4u_{xxx}\psi -12u_{xx}\psi_x -12u_x\psi_{xx} -4u\psi_{xxx}) + 3u\psi_{xxx} + 3u_x\psi_{xx} + 9u_{xx}\psi_x + 3u_{xxx}\psi + 6uu_x\psi \\ | ||
&= (-u_{xxx}\psi -3u_{xx}\psi_x -9u_x\psi_{xx} -u\psi_{xxx}) + 6uu_x\psi | |||
\ | \end{align} | ||
</math> | |||
So the final result is: | |||
<math> | |||
[P,L]\psi = ( -u_{xxx} + 6uu_x ) \psi | |||
\ | </math> | ||
\ | |||
</math> | |||
Thus, we have: | |||
:<math> \frac{dL}{dt} = [P, L] \quad \Rightarrow \quad \frac{du}{dt} = -u_{xxx} + 6uu_x </math> | |||
Which is exactly the KdV equation. | |||
=== Summary === | |||
The KdV equation: | |||
:<math> u_t + 6uu_x + u_{xxx} = 0 </math> | |||
can be written as the Lax equation: | |||
\ | :<math> \frac{dL}{dt} = [P, L] </math> | ||
</math | |||
where | |||
:<math> L = -\partial_x^2 + u, \qquad P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u </math> | |||
\ | |||
This reformulation reveals the integrable structure of the KdV equation and allows powerful solution methods such as the inverse scattering transform. | |||
== Lecture Videos == | |||
== | === Part 1 === | ||
{{#ev:youtube|P3uMk9OS8p4}} | |||
} |
Latest revision as of 00:56, 7 August 2025
Nonlinear PDE's Course | |
---|---|
Current Topic | Introduction to the Inverse Scattering Transform |
Next Topic | Properties of the Linear Schrodinger Equation |
Previous Topic | Conservation Laws for the KdV |
Miura transform
The inverse scattering transformation gives a way to solve the KdV equation exactly. You can think about is as being an analogous transformation to the Fourier transformation, except it works for a non linear equation. We want to be able to solve
with [math]\displaystyle{ \left\vert u\right\vert \rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math]
The Miura transformation is given by
and if [math]\displaystyle{ v }[/math] satisfies the mKdV
then [math]\displaystyle{ u }[/math] satisfies the KdV (but not vice versa). We can think about the Miura transformation as being a nonlinear ODE solving for [math]\displaystyle{ v }[/math] given [math]\displaystyle{ u. }[/math] This nonlinear ODE is also known as the Riccati equation and there is a well known transformation which linearises this equation. It we write
then we obtain the equation
The KdV is invariant under the transformation [math]\displaystyle{ x\rightarrow x+6\lambda t, }[/math] [math]\displaystyle{ u\rightarrow u+\lambda. }[/math] Therefore we consider the associated eigenvalue problem
The eigenfunctions and eigenvalues of this scattering problem play a key role in the inverse scattering transformation. Note that this is Schrodinger's equation.
Lax Pair
A powerful way to study the KdV equation is via the idea of a Lax pair.
A Lax pair consists of two linear operators [math]\displaystyle{ L }[/math] and [math]\displaystyle{ P }[/math] such that the KdV equation is equivalent to the so-called Lax equation:
- [math]\displaystyle{ \frac{dL}{dt} = [P, L] = PL - LP }[/math]
For the KdV equation, a classical Lax pair is:
- [math]\displaystyle{ L = -\partial_x^2 + u(x,t) }[/math]
- [math]\displaystyle{ P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u }[/math]
These are differential operators acting on a function [math]\displaystyle{ \psi(x,t) }[/math]. The idea is that the evolution of [math]\displaystyle{ u(x,t) }[/math] is such that the operator [math]\displaystyle{ L }[/math] undergoes an isospectral deformation: its spectrum does not change in time.
If [math]\displaystyle{ L\psi = \lambda \psi }[/math] and [math]\displaystyle{ \psi_t = P\psi }[/math], then consistency requires:
- [math]\displaystyle{ \frac{d}{dt}(L\psi) = L_t \psi + L\psi_t = PL\psi }[/math]
so
- [math]\displaystyle{ L_t = [P, L] }[/math]
This is the Lax equation.
Derivation of the KdV Equation from the Lax Pair
Let us now compute [math]\displaystyle{ [P, L] = PL - LP }[/math] explicitly, using:
- [math]\displaystyle{ L = -\partial_x^2 + u }[/math]
- [math]\displaystyle{ P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u }[/math]
We compute the commutator acting on a test function [math]\displaystyle{ \psi }[/math]:
Step 1: Compute [math]\displaystyle{ PL\psi }[/math].
[math]\displaystyle{ \begin{align} PL\psi &= P(-\psi_{xx} + u\psi) \\ &= -4\partial_x^3(-\psi_{xx} + u\psi) + 3u\partial_x(-\psi_{xx} + u\psi) + 3\partial_x u (-\psi_{xx} + u\psi) \end{align} }[/math]
We compute each term:
- [math]\displaystyle{ -4\partial_x^3(-\psi_{xx}) = -4\partial_x^3(-\psi_{xx}) = 4\psi_{xxxxx} }[/math]
- [math]\displaystyle{ -4\partial_x^3(u\psi) = -4[(u\psi)_{xxx}] }[/math]
- [math]\displaystyle{ 3u\partial_x(-\psi_{xx}) = -3u\psi_{xxx} }[/math]
- [math]\displaystyle{ 3u\partial_x(u\psi) = 3u(u\psi)_x = 3u^2\psi_x + 3uu_x\psi }[/math]
- [math]\displaystyle{ 3\partial_x u (-\psi_{xx}) = -3u_x\psi_{xx} }[/math]
- [math]\displaystyle{ 3\partial_x u (u\psi) = 3u_x u \psi + 3u u_x \psi = 6u u_x \psi }[/math]
Add all the terms together:
[math]\displaystyle{ \begin{align} PL\psi &= 4\psi_{xxxxx} -4(u\psi)_{xxx} -3u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi -3u_x\psi_{xx} + 6uu_x\psi \end{align} }[/math]
Step 2: Compute [math]\displaystyle{ LP\psi }[/math].
[math]\displaystyle{ \begin{align} LP\psi &= (-\partial_x^2 + u)P\psi = -\partial_x^2(P\psi) + u P\psi \end{align} }[/math]
We focus on the leading terms in [math]\displaystyle{ P\psi }[/math]:
[math]\displaystyle{ P\psi = -4\psi_{xxx} + 3u\psi_x + 3u_x\psi }[/math]
Then:
[math]\displaystyle{ \begin{align} LP\psi &= -\partial_x^2(-4\psi_{xxx} + 3u\psi_x + 3u_x\psi) + u(-4\psi_{xxx} + 3u\psi_x + 3u_x\psi) \\ &= 4\psi_{xxxxx} -3\partial_x^2(u\psi_x) -3\partial_x^2(u_x\psi) -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi \end{align} }[/math]
Compute:
- [math]\displaystyle{ \partial_x^2(u\psi_x) = u_{xx}\psi_x + 2u_x\psi_{xx} + u\psi_{xxx} }[/math]
- [math]\displaystyle{ \partial_x^2(u_x\psi) = u_{xxx}\psi + 2u_{xx}\psi_x + u_x\psi_{xx} }[/math]
So:
[math]\displaystyle{ \begin{align} LP\psi &= 4\psi_{xxxxx} -3(u_{xx}\psi_x + 2u_x\psi_{xx} + u\psi_{xxx}) -3(u_{xxx}\psi + 2u_{xx}\psi_x + u_x\psi_{xx}) \\ &\quad -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi \end{align} }[/math]
Simplify:
[math]\displaystyle{ \begin{align} LP\psi &= 4\psi_{xxxxx} -3u_{xx}\psi_x -6u_x\psi_{xx} -3u\psi_{xxx} -3u_{xxx}\psi -6u_{xx}\psi_x -3u_x\psi_{xx} \\ &\quad -4u\psi_{xxx} + 3u^2\psi_x + 3uu_x\psi \end{align} }[/math]
Group like terms:
- [math]\displaystyle{ -3u\psi_{xxx} -4u\psi_{xxx} = -7u\psi_{xxx} }[/math]
- [math]\displaystyle{ -6u_x\psi_{xx} -3u_x\psi_{xx} = -9u_x\psi_{xx} }[/math]
- [math]\displaystyle{ -3u_{xx}\psi_x -6u_{xx}\psi_x = -9u_{xx}\psi_x }[/math]
- [math]\displaystyle{ -3u_{xxx}\psi }[/math]
So:
[math]\displaystyle{ \begin{align} LP\psi &= 4\psi_{xxxxx} -7u\psi_{xxx} -9u_x\psi_{xx} -9u_{xx}\psi_x -3u_{xxx}\psi + 3u^2\psi_x + 3uu_x\psi \end{align} }[/math]
Step 3: Compute [math]\displaystyle{ [P, L]\psi = PL\psi - LP\psi }[/math]
Subtract term by term (all [math]\displaystyle{ \psi }[/math] terms):
- The [math]\displaystyle{ 4\psi_{xxxxx} }[/math] terms cancel.
- Remaining terms:
[math]\displaystyle{ \begin{align} [P, L]\psi &= (-4(u\psi)_{xxx} + 3u\psi_{xxx}) + 3u_x\psi_{xx} + 9u_{xx}\psi_x + 3u_{xxx}\psi + 6uu_x\psi \end{align} }[/math]
Use:
[math]\displaystyle{ (u\psi)_{xxx} = u_{xxx}\psi + 3u_{xx}\psi_x + 3u_x\psi_{xx} + u\psi_{xxx} }[/math]
So:
[math]\displaystyle{ \begin{align} -4(u\psi)_{xxx} &= -4(u_{xxx}\psi + 3u_{xx}\psi_x + 3u_x\psi_{xx} + u\psi_{xxx}) \\ &= -4u_{xxx}\psi -12u_{xx}\psi_x -12u_x\psi_{xx} -4u\psi_{xxx} \end{align} }[/math]
Now add everything:
[math]\displaystyle{ \begin{align} [P,L]\psi &= (-4u_{xxx}\psi -12u_{xx}\psi_x -12u_x\psi_{xx} -4u\psi_{xxx}) + 3u\psi_{xxx} + 3u_x\psi_{xx} + 9u_{xx}\psi_x + 3u_{xxx}\psi + 6uu_x\psi \\ &= (-u_{xxx}\psi -3u_{xx}\psi_x -9u_x\psi_{xx} -u\psi_{xxx}) + 6uu_x\psi \end{align} }[/math]
So the final result is:
[math]\displaystyle{ [P,L]\psi = ( -u_{xxx} + 6uu_x ) \psi }[/math]
Thus, we have:
- [math]\displaystyle{ \frac{dL}{dt} = [P, L] \quad \Rightarrow \quad \frac{du}{dt} = -u_{xxx} + 6uu_x }[/math]
Which is exactly the KdV equation.
Summary
The KdV equation:
- [math]\displaystyle{ u_t + 6uu_x + u_{xxx} = 0 }[/math]
can be written as the Lax equation:
- [math]\displaystyle{ \frac{dL}{dt} = [P, L] }[/math]
where
- [math]\displaystyle{ L = -\partial_x^2 + u, \qquad P = -4\partial_x^3 + 3u\partial_x + 3\partial_x u }[/math]
This reformulation reveals the integrable structure of the KdV equation and allows powerful solution methods such as the inverse scattering transform.