Template:Equations for the eigenfunctions of a free beam: Difference between revisions
From WikiWaves
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
We can find | We can find eigenfunctions which satisfy | ||
<center> | <center> | ||
<math>\partial_x^4 | <math>\partial_x^4 X_n = \lambda_n^4 X_n | ||
\,\,\, -L \leq x \leq L | \,\,\, -L \leq x \leq L | ||
</math> | </math> | ||
Line 7: | Line 7: | ||
plus the edge conditions of zero bending moment and shear stress | plus the edge conditions of zero bending moment and shear stress | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
\partial_x^3 | \partial_x^3 X_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
\partial_x^2 | \partial_x^2 X_n = 0 \;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. | ||
\end{matrix}</math></center> | \end{matrix}</math></center> |
Latest revision as of 10:40, 8 April 2009
We can find eigenfunctions which satisfy
[math]\displaystyle{ \partial_x^4 X_n = \lambda_n^4 X_n \,\,\, -L \leq x \leq L }[/math]
plus the edge conditions of zero bending moment and shear stress