|
|
(7 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| {{incomplete pages}} | | {{complete pages}} |
|
| |
|
| == Introduction == | | == Introduction == |
Line 5: |
Line 5: |
| The problem of a two-dimensional finite dock is solved using a green function. | | The problem of a two-dimensional finite dock is solved using a green function. |
| The same problem is solved using eigenfunction matching in [[Eigenfunction Matching for a Finite Dock]]. | | The same problem is solved using eigenfunction matching in [[Eigenfunction Matching for a Finite Dock]]. |
| | The problem of a floating body on the surface using the same method is treated in |
| | [[Green Function Method for a Floating Body on the Surface]] and for a floating elastic plate |
| | in [[Green Function Methods for Floating Elastic Plates]] |
|
| |
|
| == Equations for a Dock in the Frequency Domain == | | == Equations for a Dock in the Frequency Domain == |
Line 20: |
Line 23: |
| </math></center> | | </math></center> |
|
| |
|
| | | == Solution for Diffracted Potential == |
| We now consider the scattered potentials <math>\phi^{\mathrm{S}}</math>. The relationship between scattered potentials, diffracted potentials and the incident wave are as follows:
| |
| <center><math>
| |
| \phi^{\mathrm{D}}=\phi^{\mathrm{I}}+\phi^{\mathrm{S}} \,
| |
| </math></center>
| |
| from this, we can construct the following conditions:
| |
| <center><math>
| |
| \Delta\phi^{\mathrm{S}} =0,\,\,-h<z<0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} =0,\,\,z=-h,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} =\alpha\phi^{\mathrm{S}},\,\,x\notin(-L,L),\, \,
| |
| z=0
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} = -\partial_{z}\phi^{\mathrm{I}},\,\,x\in(-L,L),\,\,z=0.
| |
| </math></center> <br /><br />
| |
| | |
| We now consider the radiation potentials <math>\phi^{\mathrm{R}}</math>. We can express the radiation potential as:
| |
| <center><math>
| |
| \phi^{\mathrm{R}}=\sum_{n=0}^{\infty}\zeta_n \phi_n^{\mathrm{R}}
| |
| </math></center>
| |
| which satisfy the following equations
| |
| <center><math>
| |
| \Delta\phi_n^{\mathrm{R}} =0,\,\,-h<z<0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} =0,\,\,z=-h,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} =\alpha\phi_n^{\mathrm{R}},\,\,x\notin(-L,L),\, \,
| |
| z=0
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} = i\omega X_{n},\,\,x\in(-L,L),\,\,z=0.
| |
| </math></center>
| |
| The radiation condition for the radiation potential is
| |
| <center><math>
| |
| \frac{\partial\phi_n^{\mathrm{R}}}{\partial x}\pm ik\phi_n^{\mathrm{R}}=0,\,\,\mathrm{as}
| |
| \,\,x\rightarrow\pm\infty.
| |
| </math></center>
| |
| Therefore we find the potential as
| |
| <center><math>
| |
| \phi=\phi^{\mathrm{D}} +\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{\mathrm{R}},
| |
| </math></center>
| |
| so that
| |
| <center><math>
| |
| \sum_{n=0}^{\infty}\left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right)
| |
| \zeta_{n}X_{n}=-i\omega \left( \phi^{\mathrm{D}}+\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{\mathrm{R}} \right).
| |
| </math></center>
| |
| If we multiply by <math>X_m</math> and take an inner product over the plate we obtain
| |
| <center><math>
| |
| \left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right) \zeta_{n}=-i\omega
| |
| \int_{-L}^{L}\phi^{\mathrm{D}} X_{n}\mathrm{d}x +
| |
| \sum_{m=0}^{\infty}\left(\omega^2 a_{mn}(\omega) - i\omega b_{mn}(\omega)\right)
| |
| \zeta_{m},
| |
| </math></center>
| |
| where the functions <math>a_{mn}(\omega)</math> and <math>b_{mn}(\omega)</math> are given by
| |
| <center><math>
| |
| \omega^2 a_{mn}(\omega) -i\omega b_{mn}(\omega) = - i\omega\int_{-L}^{L}\phi_m^{\mathrm{R}}X_{n}\mathrm{d}x,
| |
| </math></center>
| |
| and they are referred to as the added mass and damping coefficients (see [[Added-Mass, Damping Coefficients And Exciting Forces]]
| |
| for the equivalent definition for a rigid body).
| |
| respectively.
| |
| This equation is solved by truncating the number of modes.
| |
| | |
| == Solution for the Radiation and Diffracted Potential == | |
|
| |
|
| {{Green's function equations for the diffracted potential}} | | {{Green's function equations for the diffracted potential}} |
|
| |
| and
| |
| <center><math>
| |
| \phi_n^{\mathrm{R}}(x) = \int_{-L}^{L}G(x,\xi)
| |
| \left(
| |
| \alpha\phi_n^{\mathrm{R}}(\xi) - i\omega X_n(\xi)
| |
| \right)\mathrm{d} \xi
| |
| </math></center>
| |
|
| |
|
| == Reflection and Transmission Coefficients == | | == Reflection and Transmission Coefficients == |
Line 106: |
Line 33: |
| == Matlab Code == | | == Matlab Code == |
|
| |
|
| | {{finite dock green function code}} |
|
| |
|
| A program to calculate the solution in elastic modes can be found here
| |
| {{elastic plate modes code}}
| |
|
| |
| === Additional code ===
| |
|
| |
| This program requires
| |
| * {{green function surface code}}
| |
| * {{green function source and field free surface code}}
| |
| * {{free surface dispersion equation code}}
| |
| * {{eigenvalues beam}}
| |
| * {{eigenvectors beam}}
| |
|
| |
| == Alternative Solution Method using Green Functions for a Uniform Plate ==
| |
|
| |
| We can also solve the equation by a closely related method which was given in
| |
| [[Meylan and Squire 1994]].
| |
| We can transform the equations to
| |
| <center><math>
| |
| \phi(x) = \phi^{\rm I}(x) + \int_{-L}^{L}G(x,\xi)
| |
| \left(
| |
| \alpha\phi(\xi) - \partial_z\phi(\xi)
| |
| \right)\mathrm{d} \xi
| |
| </math></center>
| |
|
| |
| Expanding as before
| |
| <center>
| |
| <math>
| |
| \partial_z \phi = i\omega \sum \xi_n X_n
| |
| </math>
| |
| </center>
| |
| we obtain
| |
| <center><math>
| |
| -i\omega \phi = \sum \left(\beta\lambda_n^4 - \gamma\alpha + 1\right)\xi_n X_n
| |
| </math>
| |
| </center>
| |
| This leads to the following equation
| |
| <center>
| |
| <math>
| |
| \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} \frac{X_n(x)X_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1} \phi(\xi)\mathrm{d}\xi
| |
| </math>
| |
| </center>
| |
| or
| |
| <center>
| |
| <math>
| |
| \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} g(x,\xi) \phi(\xi)\mathrm{d}\xi
| |
| </math>
| |
| </center>
| |
| where
| |
| <center>
| |
| <math>
| |
| g(x,\xi) = \frac{X_n(x)X_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1}
| |
| </math>
| |
| </center>
| |
| which is the Green function for the plate.
| |
|
| |
|
| |
| We begin with the diffraction potential <math>\phi^{\mathrm{D}}</math> which
| |
| satisfies the following equations
| |
| <center><math>
| |
| \Delta\phi^{\mathrm{D}} =0,\,\,-h<z<0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{D}} =0,\,\,z=-h,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{D}} =\alpha \phi^{\mathrm{D}},\,\,x\notin(-L,L),\,\,
| |
| z=0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{D}} =0,\,\,x\in(-L,L),\,\,z=0.
| |
| </math></center>
| |
| Furthermore, <math>\phi^{\mathrm{D}}</math> satisfies the [[Sommerfeld Radiation Condition]]
| |
| <center><math>
| |
| \frac{\partial}{\partial x} \left(\phi^{\mathrm{D}}-\phi^{\rm
| |
| I} \right) \pm ik\left( \phi^{\mathrm{D}}-\phi^{\rm I}\right)
| |
| = 0
| |
| ,\,\,\mathrm{as}
| |
| \,\,x\rightarrow\pm\infty,
| |
| </math></center>
| |
| where
| |
| <math>k ,\,</math> is the wavenumber,
| |
| which is the positive real solution of the [[Dispersion Relation for a Free Surface]]
| |
| <center><math>
| |
| k\tanh(kh)=\omega^{2} \,
| |
| </math></center>
| |
| and <math>\phi^{\rm I}</math> is the incident wave given by
| |
| <center><math>
| |
| \phi^{\rm I} = \frac{\cosh(k(z+h))}{\cosh(kh)} e^{-i kx} \,
| |
| </math></center>
| |
| (which has unit amplitude in potential) and
| |
| is travelling towards positive
| |
| infinity.
| |
|
| |
|
| |
| As the plate is floating on the surface, we can denote it as follows:
| |
| <center><math>
| |
| \phi^{\rm I}|_{z=0} = e^{-i kx} \,
| |
| </math></center>
| |
|
| |
|
| |
| We now consider the scattered potentials <math>\phi^{\mathrm{S}}</math>. The relationship between scattered potentials, diffracted potentials and the incident wave are as follows:
| |
| <center><math>
| |
| \phi^{\mathrm{D}}=\phi^{\mathrm{I}}+\phi^{\mathrm{S}} \,
| |
| </math></center>
| |
| from this, we can construct the following conditions:
| |
| <center><math>
| |
| \Delta\phi^{\mathrm{S}} =0,\,\,-h<z<0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} =0,\,\,z=-h,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} =\alpha\phi^{\mathrm{S}},\,\,x\notin(-L,L),\, \,
| |
| z=0
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi^{\mathrm{S}} = -\partial_{z}\phi^{\mathrm{I}},\,\,x\in(-L,L),\,\,z=0.
| |
| </math></center> <br /><br />
| |
|
| |
| We now consider the radiation potentials <math>\phi^{\mathrm{R}}</math>. We can express the radiation potential as:
| |
| <center><math>
| |
| \phi^{\mathrm{R}}=\sum_{n=0}^{\infty}\zeta_n \phi_n^{\mathrm{R}}
| |
| </math></center>
| |
| which satisfy the following equations
| |
| <center><math>
| |
| \Delta\phi_n^{\mathrm{R}} =0,\,\,-h<z<0,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} =0,\,\,z=-h,
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} =\alpha\phi_n^{\mathrm{R}},\,\,x\notin(-L,L),\, \,
| |
| z=0
| |
| </math></center>
| |
| <center><math>
| |
| \partial_{z}\phi_n^{\mathrm{R}} = i\omega X_{n},\,\,x\in(-L,L),\,\,z=0.
| |
| </math></center>
| |
| The radiation condition for the radiation potential is
| |
| <center><math>
| |
| \frac{\partial\phi_n^{\mathrm{R}}}{\partial x}\pm ik\phi_n^{\mathrm{R}}=0,\,\,\mathrm{as}
| |
| \,\,x\rightarrow\pm\infty.
| |
| </math></center>
| |
| Therefore we find the potential as
| |
| <center><math>
| |
| \phi=\phi^{\mathrm{D}} +\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{\mathrm{R}},
| |
| </math></center>
| |
| so that
| |
| <center><math>
| |
| \sum_{n=0}^{\infty}\left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right)
| |
| \zeta_{n}X_{n}=-i\omega \left( \phi^{\mathrm{D}}+\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{\mathrm{R}} \right).
| |
| </math></center>
| |
| If we multiply by <math>X_m</math> and take an inner product over the plate we obtain
| |
| <center><math>
| |
| \left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right) \zeta_{n}=-i\omega
| |
| \int_{-L}^{L}\phi^{\mathrm{D}} X_{n}\mathrm{d}x +
| |
| \sum_{m=0}^{\infty}\left(\omega^2 a_{mn}(\omega) - i\omega b_{mn}(\omega)\right)
| |
| \zeta_{m},
| |
| </math></center>
| |
| where the functions <math>a_{mn}(\omega)</math> and <math>b_{mn}(\omega)</math> are given by
| |
| <center><math>
| |
| \omega^2 a_{mn}(\omega) -i\omega b_{mn}(\omega) = - i\omega\int_{-L}^{L}\phi_m^{\mathrm{R}}X_{n}\mathrm{d}x,
| |
| </math></center>
| |
| and they are referred to as the added mass and damping coefficients (see [[Added-Mass, Damping Coefficients And Exciting Forces]]
| |
| for the equivalent definition for a rigid body).
| |
| respectively.
| |
| This equation is solved by truncating the number of modes.
| |
|
| |
| == Solution for the Radiation and Diffracted Potential ==
| |
|
| |
| We use the [[Free-Surface Green Function]] for two-dimensional waves, with singularity at
| |
| the water surface since we are only
| |
| interested in its value at <math>z=0.</math> Using this we can transform the system of equations to
| |
|
| |
| <center><math>
| |
| \phi^{\mathrm{D}}(x) = \phi^{\mathrm{I}}(x) + \int_{-L}^{L}G(x,\xi) \alpha\phi^{\mathrm{S}}(\xi) \mathrm{d} \xi
| |
| </math></center>
| |
| and
| |
| <center><math>
| |
| \phi_n^{\mathrm{R}}(x) = \int_{-L}^{L}G(x,\xi)
| |
| \left(
| |
| \alpha\phi_n^{\mathrm{R}}(\xi) - i\omega X_n(\xi)
| |
| \right)\mathrm{d} \xi
| |
| </math></center>
| |
|
| |
| Details about this method can be found in [[Integral Equation for the Finite Depth Green Function at Surface]].
| |
|
| |
| == Reflection and Transmission Coefficients ==
| |
|
| |
| The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave. They hold the property that <math> |R|^2+|T|^2=1\,</math> (and may often contain an imaginery element).
| |
|
| |
| [[Image:Square_volume.png|600px|right|thumb|frame|A diagram depicting the area <math>\Omega\,</math> which is bounded by the rectangle <math>\partial \Omega \,</math>. The rectangle <math>\partial \Omega \,</math> is bounded by <math> -h \leq z \leq 0 \,</math> and <math>-\infty \leq x \leq \infty \,</math> or <math>-N \leq x \leq N\,</math>]]
| |
|
| |
| We can calculate the Reflection and Transmission coefficients as follows:
| |
| Applying Green's theorem to <math>\phi\,</math> and <math>\phi^{\mathrm{I}}\,</math> gives:
| |
| <center><math>
| |
| 0 = \iint_{\Omega}(\phi\nabla^2\phi^{\mathrm{I}} - \phi^{\mathrm{I}}\nabla^2\phi)\mathrm{d}x\mathrm{d}z
| |
| = \int_{\partial\Omega}(\phi\frac{\partial\phi^{\rm I}}{\partial n} - \phi^{\rm I}\frac{\partial\phi}{\partial n})\mathrm{d}l,
| |
| </math></center>
| |
| <center><math>
| |
| = \phi_0(0) \int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x
| |
| - 2k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z.
| |
| </math></center><br\>
| |
| where <math> k_0 \,</math> is the first imaginery root of the dispersion equation and the incident wave is of the form: <math> \phi^I=\phi_0(z)e^{-ikx} \,</math><br\><br\>
| |
| Therefore, in the case of a floating plate (where z=0):
| |
| <center><math>
| |
| R = \frac{\int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
| |
| {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
| |
| </math></center>
| |
| and using a wave incident from the right we obtain
| |
| <center><math>
| |
| 1 + T = \frac{\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
| |
| {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
| |
| </math></center>
| |
|
| |
| == Matlab Code ==
| |
|
| |
|
| |
| A program to calculate the solution in elastic modes can be found here
| |
| {{elastic plate modes code}}
| |
|
| |
| === Additional code ===
| |
|
| |
| This program requires
| |
| * {{green function surface code}}
| |
| * {{green function source and field free surface code}}
| |
| * {{free surface dispersion equation code}}
| |
| * {{eigenvalues beam}}
| |
| * {{eigenvectors beam}}
| |
|
| |
| == Alternative Solution Method using Green Functions for a Uniform Plate ==
| |
|
| |
| We can also solve the equation by a closely related method which was given in
| |
| [[Meylan and Squire 1994]].
| |
| We can transform the equations to
| |
| <center><math>
| |
| \phi(x) = \phi^{\rm I}(x) + \int_{-L}^{L}G(x,\xi)
| |
| \left(
| |
| \alpha\phi(\xi) - \partial_z\phi(\xi)
| |
| \right)\mathrm{d} \xi
| |
| </math></center>
| |
|
| |
| Expanding as before
| |
| <center>
| |
| <math>
| |
| \partial_z \phi = i\omega \sum \xi_n X_n
| |
| </math>
| |
| </center>
| |
| we obtain
| |
| <center><math>
| |
| -i\omega \phi = \sum \left(\beta\lambda_n^4 - \gamma\alpha + 1\right)\xi_n X_n
| |
| </math>
| |
| </center>
| |
| This leads to the following equation
| |
| <center>
| |
| <math>
| |
| \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} \frac{X_n(x)X_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1} \phi(\xi)\mathrm{d}\xi
| |
| </math>
| |
| </center>
| |
| or
| |
| <center>
| |
| <math>
| |
| \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} g(x,\xi) \phi(\xi)\mathrm{d}\xi
| |
| </math>
| |
| </center>
| |
| where
| |
| <center>
| |
| <math>
| |
| g(x,\xi) = \frac{X_n(x)X_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1}
| |
| </math>
| |
| </center>
| |
| which is the Green function for the plate.
| |
|
| |
|
| [[Category:Floating Elastic Plate]] | | [[Category:Linear Water-Wave Theory]] |