Template:Sommerfeld radiation condition three dimensions: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
In three-dimensions the [[Sommerfeld Radiation Condition]] is  
In three-dimensions the [[Sommerfeld Radiation Condition]] is  
<center><math>
<center><math>
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|} + \mathrm{i} k \right)
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|} - \mathrm{i} k \right)
(\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
(\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
</math></center>
</math></center>
where <math>\phi^{\mathrm{{I}}}</math> is the incident potential.
where <math>\phi^{\mathrm{{I}}}</math> is the incident potential.

Latest revision as of 22:27, 29 April 2010

In three-dimensions the Sommerfeld Radiation Condition is

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|} - \mathrm{i} k \right) (\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.