Burgers Equation: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
Levi (talk | contribs)
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{nonlinear waves course
{{nonlinear waves course
  | chapter title = Burgers Equation
  | chapter title = Burgers Equation
  | next chapter =
  | next chapter =  
  | previous chapter = [[Reaction-Diffusion Systems]]
  | previous chapter = [[Reaction-Diffusion Systems]]
}}
}}
Line 26: Line 26:
\partial _{t}u+u\partial _{x}u=\nu \partial _{x}^{2}u  
\partial _{t}u+u\partial _{x}u=\nu \partial _{x}^{2}u  
</math></center>
</math></center>
(changing variables to <math>u)\ </math>and this equation is known as Burgers equation.
(changing variables to <math>u</math> and this equation is known as Burgers equation.


==Travelling Wave Solution==
==Travelling Wave Solution==
Line 36: Line 36:
This leads to the equations  
This leads to the equations  
<center><math>
<center><math>
-vu^{\prime }+u^{\prime }u-\nu u^{\prime \prime }=0
-cu^{\prime }+u^{\prime }u-\nu u^{\prime \prime }=0
</math></center>
</math></center>
We begin by looking at the phase plane for this system, writing <math>w=u^{\prime
We begin by looking at the phase plane for this system, writing <math>w=u^{\prime
}</math> so that  
}</math> so that  
<center><math>\begin{matrix}
<center><math>\begin{matrix}
\frac{du}{d\xi } &=&w \\
\dfrac{\mathrm{d}u}{\mathrm{d}\xi } &=&w \\
\frac{dw}{d\xi } &=&\frac{1}{\nu }\left( w\left( u-c\right) \right)  
\dfrac{\mathrm{d}w}{\mathrm{d}\xi } &=&\frac{1}{\nu }\left( w\left( u-c\right) \right)  
\end{matrix}</math></center>
\end{matrix}</math></center>
This is a degenerate system with the entire <math>u</math> axis being equilibria.
This is a degenerate system with the entire <math>u</math> axis being equilibria.
Line 52: Line 52:
can be integrated to give  
can be integrated to give  
<center><math>
<center><math>
-cu+\frac{1}{2}\left( u\right) ^{2}-\nu u^{\prime }=c_{1}
-cu+\frac{1}{2}\left( u\right) ^{2}-\nu u^{\prime} =c_{1}
</math></center>
</math></center>
which can be rearranged to give  
which can be rearranged to give  
<center><math>
<center><math>
u^{\prime }=\frac{1}{2\nu }\left( \left( u\right) ^{2}-2cu^{\prime
u^{\prime }=\frac{1}{2\nu }\left( \left( u\right) ^{2}-2cu-2c_{1}\right)  
}-2c_{1}\right)  
</math></center>
</math></center>
We define the two roots of the quadratic <math>\left( u\right) ^{2}-2\nu
We define the two roots of the quadratic <math>\left( u\right) ^{2}-2\nu
u^{\prime }-2c_{1}=0<math> by </math>u_{1}<math> and </math>u_{2}</math> and we note that the wave speed
u-2c_{1}=0</math> by <math>u_{1}</math> and <math>u_{2}</math>
and we assume that <math>u_{2} < u_{1}</math>. Note that there is only a bounded
solution if we have two real roots and for the bounded solution
<math>u_{2} < u <  u_{1}</math>.
We note that the wave speed
is  
is  
<center><math>
<center><math>
v=\frac{1}{2}\left( u_{1}+u_{2}\right)  
c=\frac{1}{2}\left( u_{1}+u_{2}\right)  
</math></center>
</math></center>
The equation can therefore be written as  
The equation can therefore be written as  
Line 86: Line 89:
We solve this by solving in Fourier space to give  
We solve this by solving in Fourier space to give  
<center><math>
<center><math>
\partial _{t}\hat{u}=-\frac{1}{2}ik\left( u^{2}\right) -\nu k^{2}\hat{u}  
\partial _{t}\hat{u}=-\frac{1}{2}ik \widehat{\left( u^{2}\right)} -\nu k^{2}\hat{u}  
</math></center>
Then we solve each of the steps in turn to get
<center><math>
\partial _{t}u=\partial _{x}\left( u^{2}\right)
</math></center>
</math></center>
Then we solve each of the steps in turn
for a small time interval to give  
for a small time interval to give  
<center><math>\begin{matrix}
<center><math>\begin{matrix}
Line 100: Line 100:
\exp \left( -\nu k^{2}\Delta t\right)
\exp \left( -\nu k^{2}\Delta t\right)
\end{matrix}</math></center>
\end{matrix}</math></center>
Or, in convolution form:
<center><math>u(x, t+\Delta t)=\left(u(x, t)-\dfrac{\Delta t}2\mathcal F^{-1}\left\{ik\right\}*u^2(x, t)\right)*\mathcal F^{-1}\left\{e^{-\nu k^2\Delta t}\right\}</math></center>
And for our previously defined <math>x_m</math> and <math>k_n</math> it can be proven that <math>\mathcal F^{-1}\left\{ik\right\}_m=\dfrac\pi{2L}(-1)^m\left(\cot\dfrac{\pi m}N+i\right)</math> (<math>\cot 0</math> taken to be <math>0</math>).
{| class="wikitable"
|-
! Phase plane for a travelling wave solution
! Numerical solution of Burgers equation
|-
| [[Image:Burgers_phase.jpg|thumb|right|500px|Phase plane for a travelling wave solution of Burgers equation]]
| [[Image:File-Burgers2.gif|thumb|right|500px| Numerical solution of Burgers equation]]
|}


==Exact Solution of Burgers equations==
==Exact Solution of Burgers equations==
Line 111: Line 124:
<center><math>
<center><math>
\partial _{t}u+\partial _{x}\left( \frac{u^{2}}{2}-\nu \partial _{x}u\right)
\partial _{t}u+\partial _{x}\left( \frac{u^{2}}{2}-\nu \partial _{x}u\right)
=0  
=0
</math></center>
</math></center>
We want to find a function <math>\psi \left( x,t\right) </math> such that  
We want to find a function <math>\psi \left( x,t\right) </math> such that  
<center><math>
<center><math>
\partial _{x}\psi =u,\ \ \partial _{t}\psi =\nu \partial _{x}u-\frac{u^{2}}{2
\partial _{x}\psi =u,\ \ \partial _{t}\psi =\nu \partial _{x}u-\frac{u^{2}}{2
}  
}
</math></center>
</math></center>
Note that because <math>\partial _{x}\partial _{t}\psi =\partial _{t}\partial
Note that because <math>\partial _{x}\partial _{t}\psi =\partial _{t}\partial
Line 129: Line 142:
\psi =-2\nu \log \left( \phi \right)  
\psi =-2\nu \log \left( \phi \right)  
</math></center>
</math></center>
so that
From this we can obtain the three results:
<center><math>
\partial _{x}\psi =-2\nu \frac{\partial _{x}\phi }{\phi }
</math></center>
If we differentiate again we obtain  
<center><math>
<center><math>
\partial _{x}^{2}\psi =2\nu \left( \frac{\partial _{x}\phi }{\phi }\right)
\begin{align}
^{2}-\frac{2\nu }{\phi }\partial _{x}^{2}\phi  
\partial _{x}\psi &=-2\nu \frac{\partial _{x}\phi }{\phi } \\
</math></center>
\partial _{x}^{2}\psi &=2\nu \left( \frac{\partial _{x}\phi }{\phi }\right)
We also have
^{2}-\frac{2\nu }{\phi }\partial _{x}^{2}\phi \\
<center><math>
\partial _{t}\psi &=-2\nu \frac{\partial _{t}\phi }{\phi }
\partial _{t}\psi =-2\nu \frac{\partial _{t}\phi }{\phi }  
\end{align}
</math></center>
</math></center>
Therefore  
Therefore  
Line 150: Line 159:
<center><math>
<center><math>
-2\nu \frac{\partial _{t}\phi }{\phi }=2\nu ^{2}\left( \frac{\partial
-2\nu \frac{\partial _{t}\phi }{\phi }=2\nu ^{2}\left( \frac{\partial
_{x}\phi }{\phi }\right) ^{2}+\frac{1}{2}\left( 2\nu \frac{\partial _{x}\phi  
_{x}\phi }{\phi }\right) ^{2}
-2\nu^2 \frac{\partial_x^2\phi}{\phi}
-\frac{1}{2}\left( 2\nu \frac{\partial _{x}\phi  
}{\phi }\right) ^{2}  
}{\phi }\right) ^{2}  
</math></center>
</math></center>
Line 157: Line 168:
\partial _{t}\phi =\nu \partial _{x}^{2}\phi  
\partial _{t}\phi =\nu \partial _{x}^{2}\phi  
</math></center>
</math></center>
which is just the diffustion equation. Note that we have to transform the
which is just the diffusion equation. Note that we also have to transform the
boundary conditions. We have  
boundary conditions. We have  
<center><math>
<center><math>
Line 165: Line 176:
We can write this as  
We can write this as  
<center><math>
<center><math>
\frac{d}{dx}\left( \log \left( \phi \right) \right) =-\frac{1}{2\nu }F\left(
\frac{\mathrm{d}}{\mathrm{d}x}\left( \log \left( \phi \right) \right) =-\frac{1}{2\nu }F\left(
x\right)  
x\right)  
</math></center>
</math></center>
Line 171: Line 182:
<center><math>
<center><math>
\phi \left( x,0\right) =\Phi \left( x\right) =\exp \left( -\frac{1}{2\nu }
\phi \left( x,0\right) =\Phi \left( x\right) =\exp \left( -\frac{1}{2\nu }
\int_{0}^{x}F\left( x\right) ds\right)  
\int_{0}^{x}F\left( s\right) \mathrm{d}s\right)  
</math></center>
</math></center>
We need to solve  
We need to solve  
Line 191: Line 202:
\phi \left( x,t\right) &=&\Phi \left( x\right) * \mathcal{F}^{-1}\left[
\phi \left( x,t\right) &=&\Phi \left( x\right) * \mathcal{F}^{-1}\left[
e^{-k^{2}\nu t}\right] \\
e^{-k^{2}\nu t}\right] \\
&=&\frac{1}{2\sqrt{\pi \nu t}}\int_{-\infty }^{\infty }\Phi \left( y\right)
&=&\Phi \left( x\right) * \dfrac1{\sqrt{4\pi\nu t}} e^{-x^2 / 4\nu t} \\
\exp \left[ -\frac{\left( x-y\right) ^{2}}{4\nu t}\right] dy
&=&\frac{1}{\sqrt{4\pi \nu t}}\int_{-\infty }^{\infty }\Phi \left( y\right)
\exp \left[ -\frac{\left( x-y\right) ^{2}}{4\nu t}\right] \mathrm{d}y
\end{matrix}</math></center>
\end{matrix}</math></center>
We can then write
Which can be expressed as
<center><math>
<center><math>
\phi \left( x,t\right) =\frac{1}{2\sqrt{\pi \nu t}}\int_{-\infty }^{\infty
\phi \left( x,t\right) =\frac{1}{\sqrt{4\pi \nu t}}\int_{-\infty }^{\infty
}\exp \left[ -\frac{f}{2\nu }\right] dy
}\exp \left[ -\frac{f}{2\nu }\right] \mathrm{d}y
</math></center>
</math></center>
where  
where  
<center><math>
<center><math>
f\left( x,y,t\right) =\frac{1}{2\nu }\int_{0}^{y}F\left( s\right) ds+\frac{
f\left( x,y,t\right) =\frac{1}{2\nu }\int_{0}^{y}F\left( s\right) \mathrm{d}s+\frac{
\left( x-y\right) ^{2}}{2t}  
\left( x-y\right) ^{2}}{2t}
</math></center>
</math></center>
To find <math>u</math> we recall that  
To find <math>u</math> we recall that  
<center><math>\begin{matrix}
<center><math>\begin{matrix}
u\left( x,t\right) &=&-2\nu \frac{\partial _{x}\phi \left( x,t\right) }{\phi
u\left( x,t\right) &=&-2\nu \dfrac{\partial _{x}\phi \left( x,t\right) }{\phi
\left( x,t\right) } \\
\left( x,t\right) } \\
&=&\frac{\int_{-\infty }^{\infty }\left( \frac{x-y}{t}\right) \exp \left[ -
&=&-2\nu \dfrac{\partial _{x}\left( \Phi \left( x\right) * e^{-x^2 / 4\nu t} \right) }{\Phi \left( x\right) * e^{-x^2 / 4\nu t} } \\
\frac{f}{2\nu }\right] dy}{\int_{-\infty }^{\infty }\exp \left[ -\frac{f}{
&=&-2\nu \dfrac{\partial _{x} \Phi \left( x\right) * e^{-x^2 / 4\nu t} }{\Phi \left( x\right) * e^{-x^2 / 4\nu t} } = \dfrac{\Phi \left( x\right) * x e^{-x^2 / 4\nu t} }{\Phi \left( x\right) * t e^{-x^2 / 4\nu t} } \\
2\nu }\right] dy}
&=&\dfrac{\int_{-\infty }^{\infty }\left( \frac{x-y}{t}\right) \exp \left[ -
\dfrac{f}{2\nu }\right] \mathrm{d}y}{\int_{-\infty }^{\infty }\exp \left[ -\frac{f}{
2\nu }\right] \mathrm{d}y}
\end{matrix}</math></center>
\end{matrix}</math></center>
as <math>\partial_x(f * y)=\partial_x f * y = f * \partial_x y</math>.
== Lecture Videos ==
=== Part 1 ===
{{#ev:youtube|tVXQmxOG_6Y}}
=== Part 2 ===
{{#ev:youtube|hzgpMM_wWts}}
=== Part 3 ===
{{#ev:youtube|uH4B1XsGB-0}}
=== Part 4 ===
{{#ev:youtube|h6aDmCtJygM}}
=== Part 5 ===
{{#ev:youtube|CsnUKrLjtyQ}}

Latest revision as of 10:35, 6 November 2025

Nonlinear PDE's Course
Current Topic Burgers Equation
Next Topic
Previous Topic Reaction-Diffusion Systems




Introduction

We have already met the conservation law for the traffic equations

[math]\displaystyle{ \partial _{t}\rho +c\left( \rho \right) \partial _{x}\rho =0 }[/math]

and seen how this leads to shocks. We can smooth this equation by adding dispersion to the equation to give us

[math]\displaystyle{ \partial _{t}\rho +c\left( \rho \right) \partial _{x}\rho =\nu \partial _{x}^{2}\rho }[/math]

where [math]\displaystyle{ \nu \gt 0. }[/math]

The simplest equation of this type is to write

[math]\displaystyle{ \partial _{t}u+u\partial _{x}u=\nu \partial _{x}^{2}u }[/math]

(changing variables to [math]\displaystyle{ u }[/math] and this equation is known as Burgers equation.

Travelling Wave Solution

We can find a travelling wave solution by assuming that

[math]\displaystyle{ u\left( x,t\right) =u\left( x-ct\right) =u\left( \xi \right) }[/math]

This leads to the equations

[math]\displaystyle{ -cu^{\prime }+u^{\prime }u-\nu u^{\prime \prime }=0 }[/math]

We begin by looking at the phase plane for this system, writing [math]\displaystyle{ w=u^{\prime } }[/math] so that

[math]\displaystyle{ \begin{matrix} \dfrac{\mathrm{d}u}{\mathrm{d}\xi } &=&w \\ \dfrac{\mathrm{d}w}{\mathrm{d}\xi } &=&\frac{1}{\nu }\left( w\left( u-c\right) \right) \end{matrix} }[/math]

This is a degenerate system with the entire [math]\displaystyle{ u }[/math] axis being equilibria.

We can also solve this equation exactly as follows.

[math]\displaystyle{ -cu^{\prime }+u^{\prime }u-\nu u^{\prime \prime }=0 }[/math]

can be integrated to give

[math]\displaystyle{ -cu+\frac{1}{2}\left( u\right) ^{2}-\nu u^{\prime} =c_{1} }[/math]

which can be rearranged to give

[math]\displaystyle{ u^{\prime }=\frac{1}{2\nu }\left( \left( u\right) ^{2}-2cu-2c_{1}\right) }[/math]

We define the two roots of the quadratic [math]\displaystyle{ \left( u\right) ^{2}-2\nu u-2c_{1}=0 }[/math] by [math]\displaystyle{ u_{1} }[/math] and [math]\displaystyle{ u_{2} }[/math] and we assume that [math]\displaystyle{ u_{2} \lt u_{1} }[/math]. Note that there is only a bounded solution if we have two real roots and for the bounded solution [math]\displaystyle{ u_{2} \lt u \lt u_{1} }[/math]. We note that the wave speed is

[math]\displaystyle{ c=\frac{1}{2}\left( u_{1}+u_{2}\right) }[/math]

The equation can therefore be written as

[math]\displaystyle{ 2\nu u^{\prime }=\left( u-u_{1}\right) \left( u-u_{2}\right) }[/math]

which has solution

[math]\displaystyle{ u\left( \xi \right) =\frac{1}{2}\left( u_{1}+u_{2}\right) -\frac{1}{2}\left( u_{1}-u_{2}\right) \tanh \left[ \left( \frac{\xi }{4\nu }\right) \left( u_{1}-u_{2}\right) \right] }[/math]

Numerical Solution of Burgers equation

We can solve the equation using our split step spectral method. The equation can be written as

[math]\displaystyle{ \partial _{t}u=-\frac{1}{2}\partial _{x}\left( u^{2}\right) +\nu \partial _{x}^{2}u }[/math]

We solve this by solving in Fourier space to give

[math]\displaystyle{ \partial _{t}\hat{u}=-\frac{1}{2}ik \widehat{\left( u^{2}\right)} -\nu k^{2}\hat{u} }[/math]

Then we solve each of the steps in turn for a small time interval to give

[math]\displaystyle{ \begin{matrix} \tilde{u}\left( k,t+\Delta t\right) &=&\hat{u}\left( k,t\right) -\frac{ \Delta t}{2}ik\mathcal{F}\left( \left[ \mathcal{F}^{-1}\hat{u}\left( k,t\right) \right] ^{2}\right) \\ \hat{u}\left( k,t+\Delta t\right) &=&\tilde{u}\left( k,t+\Delta t\right) \exp \left( -\nu k^{2}\Delta t\right) \end{matrix} }[/math]

Or, in convolution form:

[math]\displaystyle{ u(x, t+\Delta t)=\left(u(x, t)-\dfrac{\Delta t}2\mathcal F^{-1}\left\{ik\right\}*u^2(x, t)\right)*\mathcal F^{-1}\left\{e^{-\nu k^2\Delta t}\right\} }[/math]

And for our previously defined [math]\displaystyle{ x_m }[/math] and [math]\displaystyle{ k_n }[/math] it can be proven that [math]\displaystyle{ \mathcal F^{-1}\left\{ik\right\}_m=\dfrac\pi{2L}(-1)^m\left(\cot\dfrac{\pi m}N+i\right) }[/math] ([math]\displaystyle{ \cot 0 }[/math] taken to be [math]\displaystyle{ 0 }[/math]).

Phase plane for a travelling wave solution Numerical solution of Burgers equation
Phase plane for a travelling wave solution of Burgers equation
Numerical solution of Burgers equation

Exact Solution of Burgers equations

We can find an exact solution to Burgers equation. We want to solve

[math]\displaystyle{ \begin{matrix} \partial _{t}u+u\partial _{x}u &=&\nu \partial _{x}^{2}u \\ u\left( x,0\right) &=&F\left( x\right) \end{matrix} }[/math]

Frist we write the equation as

[math]\displaystyle{ \partial _{t}u+\partial _{x}\left( \frac{u^{2}}{2}-\nu \partial _{x}u\right) =0 }[/math]

We want to find a function [math]\displaystyle{ \psi \left( x,t\right) }[/math] such that

[math]\displaystyle{ \partial _{x}\psi =u,\ \ \partial _{t}\psi =\nu \partial _{x}u-\frac{u^{2}}{2 } }[/math]

Note that because [math]\displaystyle{ \partial _{x}\partial _{t}\psi =\partial _{t}\partial _{x}\psi }[/math] we will satisfy Burgers equation. This gives us the following equation for [math]\displaystyle{ \psi }[/math]

[math]\displaystyle{ \partial _{t}\psi =\nu \partial _{x}^{2}\psi -\frac{1}{2}\left( \partial _{x}\psi \right) ^{2} }[/math]

We introduce the Cole-Hopf transformation

[math]\displaystyle{ \psi =-2\nu \log \left( \phi \right) }[/math]

From this we can obtain the three results:

[math]\displaystyle{ \begin{align} \partial _{x}\psi &=-2\nu \frac{\partial _{x}\phi }{\phi } \\ \partial _{x}^{2}\psi &=2\nu \left( \frac{\partial _{x}\phi }{\phi }\right) ^{2}-\frac{2\nu }{\phi }\partial _{x}^{2}\phi \\ \partial _{t}\psi &=-2\nu \frac{\partial _{t}\phi }{\phi } \end{align} }[/math]

Therefore

[math]\displaystyle{ \partial _{t}\psi =\nu \partial _{x}^{2}\psi -\frac{1}{2}\left( \partial _{x}\psi \right) ^{2} }[/math]

becomes

[math]\displaystyle{ -2\nu \frac{\partial _{t}\phi }{\phi }=2\nu ^{2}\left( \frac{\partial _{x}\phi }{\phi }\right) ^{2} -2\nu^2 \frac{\partial_x^2\phi}{\phi} -\frac{1}{2}\left( 2\nu \frac{\partial _{x}\phi }{\phi }\right) ^{2} }[/math]

or

[math]\displaystyle{ \partial _{t}\phi =\nu \partial _{x}^{2}\phi }[/math]

which is just the diffusion equation. Note that we also have to transform the boundary conditions. We have

[math]\displaystyle{ F\left( x\right) =u\left( x,0\right) =-2\nu \frac{\partial _{x}\phi \left( x,0\right) }{\phi \left( x,0\right) } }[/math]

We can write this as

[math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}x}\left( \log \left( \phi \right) \right) =-\frac{1}{2\nu }F\left( x\right) }[/math]

which has solution

[math]\displaystyle{ \phi \left( x,0\right) =\Phi \left( x\right) =\exp \left( -\frac{1}{2\nu } \int_{0}^{x}F\left( s\right) \mathrm{d}s\right) }[/math]

We need to solve

[math]\displaystyle{ \begin{matrix} \partial _{t}\phi &=&\nu \partial _{x}^{2}\phi \\ \phi \left( x,0\right) &=&\Phi \left( x\right) \end{matrix} }[/math]

We take the Fourier transform and obtain

[math]\displaystyle{ \begin{matrix} \partial _{t}\hat{\phi} &=&-k^{2}\nu \hat{\phi} \\ \hat{\phi}\left( k,0\right) &=&\hat{\Phi}\left( k\right) \end{matrix} }[/math]

which has solution

[math]\displaystyle{ \hat{\phi}\left( k,t\right) =\hat{\Phi}\left( k\right) e^{-k^{2}\nu t} }[/math]

We can then use the convolution theorem to write

[math]\displaystyle{ \begin{matrix} \phi \left( x,t\right) &=&\Phi \left( x\right) * \mathcal{F}^{-1}\left[ e^{-k^{2}\nu t}\right] \\ &=&\Phi \left( x\right) * \dfrac1{\sqrt{4\pi\nu t}} e^{-x^2 / 4\nu t} \\ &=&\frac{1}{\sqrt{4\pi \nu t}}\int_{-\infty }^{\infty }\Phi \left( y\right) \exp \left[ -\frac{\left( x-y\right) ^{2}}{4\nu t}\right] \mathrm{d}y \end{matrix} }[/math]

Which can be expressed as

[math]\displaystyle{ \phi \left( x,t\right) =\frac{1}{\sqrt{4\pi \nu t}}\int_{-\infty }^{\infty }\exp \left[ -\frac{f}{2\nu }\right] \mathrm{d}y }[/math]

where

[math]\displaystyle{ f\left( x,y,t\right) =\frac{1}{2\nu }\int_{0}^{y}F\left( s\right) \mathrm{d}s+\frac{ \left( x-y\right) ^{2}}{2t} }[/math]

To find [math]\displaystyle{ u }[/math] we recall that

[math]\displaystyle{ \begin{matrix} u\left( x,t\right) &=&-2\nu \dfrac{\partial _{x}\phi \left( x,t\right) }{\phi \left( x,t\right) } \\ &=&-2\nu \dfrac{\partial _{x}\left( \Phi \left( x\right) * e^{-x^2 / 4\nu t} \right) }{\Phi \left( x\right) * e^{-x^2 / 4\nu t} } \\ &=&-2\nu \dfrac{\partial _{x} \Phi \left( x\right) * e^{-x^2 / 4\nu t} }{\Phi \left( x\right) * e^{-x^2 / 4\nu t} } = \dfrac{\Phi \left( x\right) * x e^{-x^2 / 4\nu t} }{\Phi \left( x\right) * t e^{-x^2 / 4\nu t} } \\ &=&\dfrac{\int_{-\infty }^{\infty }\left( \frac{x-y}{t}\right) \exp \left[ - \dfrac{f}{2\nu }\right] \mathrm{d}y}{\int_{-\infty }^{\infty }\exp \left[ -\frac{f}{ 2\nu }\right] \mathrm{d}y} \end{matrix} }[/math]

as [math]\displaystyle{ \partial_x(f * y)=\partial_x f * y = f * \partial_x y }[/math].

Lecture Videos

Part 1

Part 2

Part 3

Part 4

Part 5