Template:Frequency domain equations for a floating plate: Difference between revisions
From WikiWaves
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
-\mathrm{i}\omega\zeta &= \partial_z\phi , &z=0 \\ | -\mathrm{i}\omega\zeta &= \partial_z\phi , &z=0 \\ | ||
\rho g\zeta - \mathrm{i}\omega\rho \phi &= D \partial_x^4 \ | -\rho g\zeta - \mathrm{i}\omega\rho \phi &= D \partial_x^4 \zeta -\omega^2 \rho_i h \zeta, &z=0 \\ | ||
\Delta \phi &= 0, &-h<z<0 \\ | \Delta \phi &= 0, &-h<z<0 \\ | ||
\partial_z \phi &= 0, &z=-h, | \partial_z \phi &= 0, &z=-h, | ||
| Line 18: | Line 18: | ||
\Delta \phi &= 0, &-h < z \leq 0 \\ | \Delta \phi &= 0, &-h < z \leq 0 \\ | ||
\partial_z \phi &= 0, &z = - h \\ | \partial_z \phi &= 0, &z = - h \\ | ||
\beta \partial_x^4 \zeta + \left( 1 - \gamma\alpha \right) \zeta &= -\mathrm{i} \sqrt{\alpha}\phi, &z = 0 \\ | \beta \partial_x^4 \zeta + \left( 1 - \gamma\alpha \right) \zeta &= -\mathrm{i} \sqrt{g \alpha}\phi, &z = 0 \\ | ||
-\mathrm{i}\omega\zeta &= \partial_z\phi , &z=0 . | -\mathrm{i}\omega\zeta &= \partial_z\phi , &z=0 . | ||
\end{align} | \end{align} | ||
</math></center> | </math></center> | ||
Latest revision as of 23:01, 12 November 2025
If we make the assumption of Frequency Domain Problem that everything is proportional to [math]\displaystyle{ \exp (-\mathrm{i}\omega t)\, }[/math] the equations become
where [math]\displaystyle{ \zeta }[/math] is the surface displacement and [math]\displaystyle{ \phi }[/math] is the velocity potential in the frequency domain.
These equations can be simplified by defining [math]\displaystyle{ \alpha = \omega^2/g }[/math], [math]\displaystyle{ \beta = D/\rho g }[/math] and [math]\displaystyle{ \gamma = \rho_i h/\rho }[/math] to obtain