Connection betwen KdV and the Schrodinger Equation: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Levi (talk | contribs)
mNo edit summary
Levi (talk | contribs)
Reflectionless Potential: this can actually be solved nicely (Dunajski 2009)
 
(3 intermediate revisions by the same user not shown)
Line 24: Line 24:
\partial_{t}\lambda=0
\partial_{t}\lambda=0
</math></center>
</math></center>
provided that the eigenfunction <math>w</math> is bounded (which is true for the bound
provided that the eigenfunction <math>w</math> vanishes at <math>x=\pm\infty</math> (which is true for the bound
state eigenfunctions). This shows that the discrete eigenvalues are unchanged
state eigenfunctions, i.e. those from the discrete spectrum). This shows that the discrete eigenvalues are unchanged
and <math>u\left(  x,t\right)  </math> evolves according to the KdV. Many other
and <math>u\left(  x,t\right)  </math> evolves according to the KdV. Many other
properties can be found.
properties can be found.
Some more details on the content of this lecture can be found in [https://www.rexresearch1.com/SpinorsLibrary/SolitonsInstantonsTwistorsDunajski.pdf Dunajski, Maciej (2009). Solitons, Instantons, and Twistors] (Chapters 2.2 and 2.3).


==Scattering Data==
==Scattering Data==
Line 113: Line 115:
+\sum_{n=1}^{N}c_{n}^{2}\left(  t\right)  e^{-k_{n}\left(  x+y\right)  }
+\sum_{n=1}^{N}c_{n}^{2}\left(  t\right)  e^{-k_{n}\left(  x+y\right)  }
-\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{ c_{n}^{2}\left(
-\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{ c_{n}^{2}\left(
t\right)  }{k_{n}+k_{m}}v_{m}\left(  x\right)  e^{-k_{m}x}e^{-k_{n}\left(
t\right)  }{k_{n}+k_{m}}v_{m}\left(  x, t\right)  e^{-k_{m}x}e^{-k_{n}\left(
y+x\right)  }=0
y+x\right)  }=0
</math></center>
</math></center>
Line 123: Line 125:
v_{m}\left(  x,t\right)  e^{-\left(  k_{m}+k_{n}\right)  x}=0
v_{m}\left(  x,t\right)  e^{-\left(  k_{m}+k_{n}\right)  x}=0
</math></center>
</math></center>
which is an algebraic (finite dimensional system) for the unknows <math>v_{n}.</math>.
which is an algebraic (finite dimensional system) for the unknowns <math>v_{n}.</math>.


We can write this as
We can write this as
Line 132: Line 134:
the elements of <math>\mathbf{C}</math> are given by
the elements of <math>\mathbf{C}</math> are given by
<center><math>
<center><math>
c_{mn} = \frac{c_{n}^2\left(  t\right)}
c_{nm} = \frac{c_{n}^2\left(  t\right)}
{k_{n}+k_{m}}e^{-\left(  k_{m}+k_{n}\right)  x}
{k_{n}+k_{m}}e^{-\left(  k_{m}+k_{n}\right)  x}
</math></center>
</math></center>
This gives us
This means
<center><math>
v_n(x, t)=\sum_{m=1}^{N}\left(\left(\mathbf{I}+\mathbf{C}\right)  ^{-1}\right)_{nm}f_m
</math></center>
Since <math>\partial_x\left(\delta_{nm}+c_{nm}\right)=-e^{-k_mx}f_n</math>, this gives us
<center><math>\begin{align}
K\left(  x,x,t\right)  =-&\sum_{n=1}^{N} v_n(x, t)e^{-k_{n}x} \\
=-&\sum_{m=1}^{N}\sum_{n=1}^{N} \left(\left(\mathbf{I}+\mathbf{C}\right)  ^{-1}\right)_{nm}f_me^{-k_{n}x} \\
=&\sum_{m=1}^{N}\sum_{n=1}^{N} \left(\left(\mathbf{I}+\mathbf{C}\right)  ^{-1}\right)_{nm}\partial_x\left(\left(\mathbf{I}+\mathbf{C}\right)_{mn}\right) \\
=\,&\operatorname{Tr}\left(\left(\mathbf{I}+\mathbf{C}\right)^{-1}\partial_x\left(\mathbf{I}+\mathbf{C}\right)\right) \\
=\,&\dfrac{\partial_x\left(\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right)}{\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)} \\
=\,&\partial_x\left(\log\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right)
\end{align}
</math></center>
And therefore
<center><math>
<center><math>
K\left(  x,y,t\right) =-\sum_{m=1}^{N} \left(
u\left(  x,t\right) =2\partial_{x}K\left(x,x,t\right)=2\partial^2_x\left(\log\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right)
\mathbf{I}+\mathbf{C}\right) ^{-1}\vec{f}e^{-k_{m}y}
</math></center>
</math></center>
We then find <math>u(x,t)</math> from <math>K</math>.


=== Single Soliton Example ===
=== Single Soliton Example ===
Line 159: Line 173:
&  =\frac{8k_{1}^{2}}{\left(  \sqrt{2k_{1}}e^{\theta}+e^{-\theta}/\sqrt
&  =\frac{8k_{1}^{2}}{\left(  \sqrt{2k_{1}}e^{\theta}+e^{-\theta}/\sqrt
{2k_{1}}\right)  ^{2}}\\
{2k_{1}}\right)  ^{2}}\\
&  =2k_{1}^{2}\mbox{sech}^{2}\left\{  k_{1}\left(  x-x_{0}\right)  -4k_{1}
&  =2k_{1}^{2}\operatorname{sech}^{2}\left\{  k_{1}\left(  x-x_{0}\right)  -4k_{1}
^{3}t\right\}
^{3}t\right\}
\end{align}</math></center>
\end{align}</math></center>
where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0}
where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0}
}</math>. This is of course the single soliton solution.
}</math>. This is of course the single soliton solution.


== Lecture Videos ==  
== Lecture Videos ==  

Latest revision as of 06:50, 30 September 2025

Nonlinear PDE's Course
Current Topic Connection betwen KdV and the Schrodinger Equation
Next Topic Example Calculations for the KdV and IST
Previous Topic Properties of the Linear Schrodinger Equation


If we substitute the relationship

[math]\displaystyle{ \partial_{x}^{2}w+uw=-\lambda w }[/math]

into the KdV after some manipulation we obtain

[math]\displaystyle{ \partial_{t}\lambda w^{2}+\partial_{x}\left( w\partial_{x}Q-\partial _{x}wQ\right) =0 }[/math]

where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation we obtain

[math]\displaystyle{ \int^\infty_{-\infty}\partial_{t}\lambda w^{2}\,\mathrm{d}x+\left( w\partial_{x}Q-\partial _{x}wQ\right)\Bigg|^\infty_{-\infty}=0 }[/math]

and, since [math]\displaystyle{ w^2\gt 0 }[/math] except for some isolated points,

[math]\displaystyle{ \partial_{t}\lambda=0 }[/math]

provided that the eigenfunction [math]\displaystyle{ w }[/math] vanishes at [math]\displaystyle{ x=\pm\infty }[/math] (which is true for the bound state eigenfunctions, i.e. those from the discrete spectrum). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV. Many other properties can be found.

Some more details on the content of this lecture can be found in Dunajski, Maciej (2009). Solitons, Instantons, and Twistors (Chapters 2.2 and 2.3).

Scattering Data

For the discrete spectrum the eigenfunctions behave like

[math]\displaystyle{ w_{n}\left( x,t\right) =c_{n}\left( t\right) e^{-k_{n}x} }[/math]

as [math]\displaystyle{ x\rightarrow\infty }[/math] with

[math]\displaystyle{ \int_{-\infty}^{\infty}\left( w_{n}\left( x,t\right) \right) ^{2}\mathrm{d}x=1 }[/math]

The continuous spectrum looks like

[math]\displaystyle{ w\left( x,t\right) \approx \mathrm{e}^{-\mathrm{i}kx}+r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx} ,\ \ \ x\rightarrow-\infty }[/math]
[math]\displaystyle{ w\left( x,t\right) \approx a\left( k,t\right) \mathrm{e}^{-\mathrm{i}kx},\ \ \ x\rightarrow \infty }[/math]

where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]

[math]\displaystyle{ S\left( \lambda,0\right) =\left( \left\{ k_{n},c_{n}\left( 0\right) \right\} _{n=1}^{N},r\left( k,0\right) ,a\left( k,0\right) \right) }[/math]

The scattering data evolves as

[math]\displaystyle{ k_{n}(t)=k_{n}(0) = k_{n} }[/math]
[math]\displaystyle{ c_{n}\left( t\right) =c_{n}\left( 0\right) e^{4k_{n}^{3}t} }[/math]
[math]\displaystyle{ r\left( k,t\right) =r\left( k,0\right) e^{8ik^{3}t} }[/math]
[math]\displaystyle{ a\left( k,t\right) =a\left( k,0\right) }[/math]

We can recover [math]\displaystyle{ u }[/math] from scattering data. We write

[math]\displaystyle{ F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} x}+\frac{1}{2\pi}\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx}\mathrm{d}k }[/math]

Then solve

[math]\displaystyle{ K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( x,z;t\right) F\left( z+y;t\right) \mathrm{d}z=0 }[/math]

This is a linear integral equation called the Gelfand-Levitan-Marchenko equation. We then find [math]\displaystyle{ u }[/math] from

[math]\displaystyle{ u\left( x,t\right) =2\partial_{x}K\left( x,x,t\right) }[/math]

Reflectionless Potential

In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case

[math]\displaystyle{ F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}x} }[/math]

then

[math]\displaystyle{ K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 }[/math]

From the equation we can see that

[math]\displaystyle{ K\left( x,y,t\right) =-\sum_{n=1}^{N}v_{n}\left( x,t\right) e^{-k_{n}y} }[/math]

If we substitute this into the equation,

[math]\displaystyle{ -\sum_{n=1}^{N}v_{n}\left( x,t\right) e^{-k_{n}y}+\sum_{n=1}^{N}c_{n} ^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty} -\sum_{m=1}^{N}v_{m}\left( x,t\right) e^{-k_{m}z}\sum_{n=1}^{N}c_{n} ^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 }[/math]

which leads to

[math]\displaystyle{ -\sum_{n=1}^{N} v_{n}\left( x,t\right) e^{-k_{n}y} +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) } -\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{ c_{n}^{2}\left( t\right) }{k_{n}+k_{m}}v_{m}\left( x, t\right) e^{-k_{m}x}e^{-k_{n}\left( y+x\right) }=0 }[/math]

and we can eliminate the sum over [math]\displaystyle{ n }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain

[math]\displaystyle{ -v_{n}\left( x,t\right) +c_{n}^2\left( t\right) e^{-k_{n}x}-\sum_{m=1} ^{N}\frac{c_{n}^2\left( t\right) }{k_{n}+k_{m}} v_{m}\left( x,t\right) e^{-\left( k_{m}+k_{n}\right) x}=0 }[/math]

which is an algebraic (finite dimensional system) for the unknowns [math]\displaystyle{ v_{n}. }[/math].

We can write this as

[math]\displaystyle{ \left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} }[/math]

where [math]\displaystyle{ f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x} }[/math] and the elements of [math]\displaystyle{ \mathbf{C} }[/math] are given by

[math]\displaystyle{ c_{nm} = \frac{c_{n}^2\left( t\right)} {k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} }[/math]

This means

[math]\displaystyle{ v_n(x, t)=\sum_{m=1}^{N}\left(\left(\mathbf{I}+\mathbf{C}\right) ^{-1}\right)_{nm}f_m }[/math]

Since [math]\displaystyle{ \partial_x\left(\delta_{nm}+c_{nm}\right)=-e^{-k_mx}f_n }[/math], this gives us

[math]\displaystyle{ \begin{align} K\left( x,x,t\right) =-&\sum_{n=1}^{N} v_n(x, t)e^{-k_{n}x} \\ =-&\sum_{m=1}^{N}\sum_{n=1}^{N} \left(\left(\mathbf{I}+\mathbf{C}\right) ^{-1}\right)_{nm}f_me^{-k_{n}x} \\ =&\sum_{m=1}^{N}\sum_{n=1}^{N} \left(\left(\mathbf{I}+\mathbf{C}\right) ^{-1}\right)_{nm}\partial_x\left(\left(\mathbf{I}+\mathbf{C}\right)_{mn}\right) \\ =\,&\operatorname{Tr}\left(\left(\mathbf{I}+\mathbf{C}\right)^{-1}\partial_x\left(\mathbf{I}+\mathbf{C}\right)\right) \\ =\,&\dfrac{\partial_x\left(\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right)}{\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)} \\ =\,&\partial_x\left(\log\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right) \end{align} }[/math]

And therefore

[math]\displaystyle{ u\left( x,t\right) =2\partial_{x}K\left(x,x,t\right)=2\partial^2_x\left(\log\operatorname{det}\left(\mathbf{I}+\mathbf{C}\right)\right) }[/math]

Single Soliton Example

If [math]\displaystyle{ n=1 }[/math] (a single soliton solution) we get

[math]\displaystyle{ \begin{matrix} K\left( x,x,t\right) & =-\frac{c_{1}^2\left( t\right) e^{-2k_{1}x}}{1+\frac{c_{1}^2\left( t\right) } {2k_{1}}e^{-2 k_{1} x}}\\ & =\frac{-1}{e^{2k_{1}x - 8k_{1}^{3}t-\alpha} + 1/2k_1} \end{matrix} }[/math]

where [math]\displaystyle{ e^{-\alpha}=1/c_{0}^{2}\left( 0\right) . }[/math] Therefore

[math]\displaystyle{ \begin{align} u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ & =\frac{4k_{1}e^{2k_{1}x-8k_{1}^{3}t-\alpha}}{\left( e^{2k_{1} x-8k_{1}^{3}t-\alpha} + 1/2k_1\right) ^{2}}\\ & =\frac{8k_{1}^{2}}{\left( \sqrt{2k_{1}}e^{\theta}+e^{-\theta}/\sqrt {2k_{1}}\right) ^{2}}\\ & =2k_{1}^{2}\operatorname{sech}^{2}\left\{ k_{1}\left( x-x_{0}\right) -4k_{1} ^{3}t\right\} \end{align} }[/math]

where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.

Lecture Videos

Part 1

Part 2

Part 3

Part 4