Template:Sommerfeld radiation condition two dimensions for radiation: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Created page with 'In two-dimensions the Sommerfeld Radiation Condition is <center><math> \left( \frac{\partial}{\partial|x|}-k_0\right) (\phi)=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{…'
 
No edit summary
 
Line 2: Line 2:
<center><math>
<center><math>
\left(  \frac{\partial}{\partial|x|}-k_0\right)
\left(  \frac{\partial}{\partial|x|}-k_0\right)
(\phi)=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
\phi=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
</math></center>
</math></center>
where <math>\phi^{\mathrm{{I}}}</math> is the incident potential.

Latest revision as of 20:56, 10 February 2010

In two-dimensions the Sommerfeld Radiation Condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-k_0\right) \phi=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]