Template:Incident plane wave 2d definition: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
and
and
<center><math>
<center><math>
  \phi_0(z) =\frac{\cos k_0(z+h)}{\cos k_0 h}
  \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h}
</math></center>
</math></center>

Revision as of 22:25, 29 April 2010

[math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]