Interaction Theory for Infinite Arrays: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
Mpeter (talk | contribs)
Line 1: Line 1:
=Introduction =
=Introduction =


This is strange
We want to use the [[Kagemoto and Yue Interaction Theory]] to derive a system of equations for the infinite array.
 
= System of equations =
 
We start with the final system of equations of the [[Kagemoto and Yue Interaction Theory]], namely
<center><math>
A_{m\mu}^l = \sum_{n=0}^{\infty}
\sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu}^l
\Big[ \tilde{D}_{n\nu}^{l} +
\sum_{j=1,j \neq  l}^{N} \sum_{\tau =
-\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu}  (k_n
R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big],
</math></center>
<math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>.


[[Category:Infinite Array]]
[[Category:Infinite Array]]

Revision as of 14:33, 18 July 2006

Introduction

We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.

System of equations

We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely

[math]\displaystyle{ A_{m\mu}^l = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu}^l \Big[ \tilde{D}_{n\nu}^{l} + \sum_{j=1,j \neq l}^{N} \sum_{\tau = -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], }[/math]

[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].