Interaction Theory for Infinite Arrays: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Mpeter (talk | contribs)
Mpeter (talk | contribs)
Line 15: Line 15:
</math></center>
</math></center>
<math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>.
<math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>.
For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by <math>R</math>, we have <math>R_{jl} = \abs{j-l} R</math> and
<center><math>
\varphi_{n} =
\begin{cases}
\pi, n>0,\\
0, n<0.
\end{cases}
</math></center>


[[Category:Infinite Array]]
[[Category:Infinite Array]]

Revision as of 14:36, 18 July 2006

Introduction

We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.

System of equations

We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely

[math]\displaystyle{ A_{m\mu}^l = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu}^l \Big[ \tilde{D}_{n\nu}^{l} + \sum_{j=1,j \neq l}^{N} \sum_{\tau = -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], }[/math]

[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].

For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by [math]\displaystyle{ R }[/math], we have [math]\displaystyle{ R_{jl} = \abs{j-l} R }[/math] and

[math]\displaystyle{ \varphi_{n} = \begin{cases} \pi, n\gt 0,\\ 0, n\lt 0. \end{cases} }[/math]