Wave Energy Density and Flux: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Syan077 (talk | contribs)
No edit summary
Syan077 (talk | contribs)
No edit summary
Line 1: Line 1:
<u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u>
<u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u>


<math> \bar{\varepsilon} (t) = \ \mbox{Energy in control volume} \ \gamma(t) </math> :
<math> \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) </math> :


<center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center>
<center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center>
Line 7: Line 7:
Mean energy over unit horizongtal surface area <math> S \, </math> :
Mean energy over unit horizongtal surface area <math> S \, </math> :


<center><math> \bar{\varepsilon} = \bar{\frac{\varepsilon{t}}{S}} = \rho </math></center>
<center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho </math></center>

Revision as of 08:53, 26 January 2007

Energy Density, Energy Flux and Momentum Flux of Surface Waves

[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :

[math]\displaystyle{ \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV }[/math]

Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :

[math]\displaystyle{ \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho }[/math]