Wave Energy Density and Flux: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\zeta(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\zeta(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \zeta^2 - H^2 ) } </math></center> | <center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\zeta(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\zeta(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \zeta^2 - H^2 ) } </math></center> | ||
where <math> \zeta(t) \, </math> is free surface elevation. | |||
Ignore term <math> -\frac{1}{2} \rho g H^2 \, </math> which represents the potential energy of the ocean at rest. | |||
The remaining perturbation component is the sum of the kinetic and potential energy components | |||
<math> \overline{\varepsilon} = \overline{\varepsilon_KIN} + \overline{\varepsilon_POT} </math> | |||
<math> \overline{\varepsilon_KIN} = \frac{1}{2} \rho \overline{\int_{-H}^{\zeta(t) V^2 dZ}, \ V^2 = \nabla\Phi \cdot \nabla \Phi = \Phi_X^2 + \Phi_Z^2 </math> | |||
<math> \overline{\varepsilon_POT} = \overline{\frac{1}{2} \rho g \zeta^2 (t)} </math> |
Revision as of 09:14, 26 January 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :
where [math]\displaystyle{ \zeta(t) \, }[/math] is free surface elevation.
Ignore term [math]\displaystyle{ -\frac{1}{2} \rho g H^2 \, }[/math] which represents the potential energy of the ocean at rest.
The remaining perturbation component is the sum of the kinetic and potential energy components
[math]\displaystyle{ \overline{\varepsilon} = \overline{\varepsilon_KIN} + \overline{\varepsilon_POT} }[/math]
[math]\displaystyle{ \overline{\varepsilon_KIN} = \frac{1}{2} \rho \overline{\int_{-H}^{\zeta(t) V^2 dZ}, \ V^2 = \nabla\Phi \cdot \nabla \Phi = \Phi_X^2 + \Phi_Z^2 }[/math]
[math]\displaystyle{ \overline{\varepsilon_POT} = \overline{\frac{1}{2} \rho g \zeta^2 (t)} }[/math]