Wave Energy Density and Flux: Difference between revisions
From WikiWaves
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 39: | Line 39: | ||
<center><math> \mathbf{Re} \{ B e^{i\omega t} \} = B(t) </math></center> | <center><math> \mathbf{Re} \{ B e^{i\omega t} \} = B(t) </math></center> | ||
<center><math> \overline{A(t)B(t)} = \frac{1}{2} \mathbf{Re} \{ A B* \} </math></center> | <center><math> \overline{A(t)B(t)} = \frac{1}{2} \mathbf{Re} \{ A B^* \} </math></center> | ||
<center><math> \overline{\epsilon_{kin}} = \frac{1}{2} \rho \overline{ ( \int_{-\infty}^0 + </math></center> | <center><math> \overline{\epsilon_{kin}} = \frac{1}{2} \rho \overline{ ( \int_{-\infty}^0 + \int_0^\zeta ) \left( \Phi_X^2 + \Phi_Z^2 \right) } dZ </math></center> |
Revision as of 01:41, 1 February 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :
where [math]\displaystyle{ \zeta(t) \, }[/math] is free surface elevation.
Ignore term [math]\displaystyle{ -\frac{1}{2} \rho g H^2 \, }[/math] which represents the potential energy of the ocean at rest.
The remaining perturbation component is the sum of the kinetic and potential energy components
Consider now as a special case plane progressive waves defined by the velocity potential in deep water (for simplicity):
Lemma
Let: