Wavemaker Theory: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
A paddle with draft <math> D\, </math> is undergoing small amplitude horizontal oscillations with | A paddle with draft <math> D\, </math> is undergoing small amplitude horizontal oscillations with displacement | ||
<center><math> \xi (t) = \mathfrak{Re} \left \{ \Pi e^{i\omega t} \right \} </math></center> | <center><math> \xi (t) = \mathfrak{Re} \left \{ \Pi e^{i\omega t} \right \} </math></center> | ||
Where <math> \Pi\, </math> is assumed known and real. This excitation creates plane progressive waves with amplitude <math> A \, </math> down the tank. The principal objective of wavemaker theory is to determine <math> A \, </math> as a function of <math> \omega, \Pi \, </math> and <math> H \, </math>. | |||
Other types of wavemaker modes may be treated similarly. | |||
In general, the wavemaker displacement at <math> X=0\, </math> may be written in the form | |||
<center><math> \xi(t) = \mathfrak{Re} \left{ \Pi (Z) e^{i\omega t} \right \} </math></center> | |||
Where <math> \Pi(Z) \, </math> is a known function of <math> Z \, </math>. | |||
Let the total velocity potential be: | |||
<center><math> \Phi = \mathfrak{Re} \left \{ \phi e^{i\omega t} \right \} </math></center> | |||
where | |||
<center><math> \phi = \phi_\omega \ + \psi </math></center> | |||
The first term is a velocity potential that represents a plane progressive regular wave down the tank with amplitude <math> A \, </math>, yet unknown. Thus: | |||
<center><math> \phi_\omega = \frac{igA}{\omega} \frac{\cosh K (Z+H)}{\cosh KH} e^{-iKX + i\omega t} </math></center> | |||
with: | |||
<center><math> \omega^2 = gK \tanh KH </math></center>. | |||
The second component potential <math>\psi\,</math> is by definition a decaying disturbance as <math> X \to \infty \, </math> and otherwise astisfies the following boundary value problem: | |||
<center><math> \begin{cases} | |||
\nabla^2 \psi = \psi_XX + \psi_ZZ = 0, -H < Z < 0 \\ | |||
\psi_Z - \frac{\omega^2}{g} \psi = 0, Z=0 \\ | |||
\psi_Z = 0, Z=-H \\ | |||
\psi \to 0, X \to \infty | |||
/end{cases} | |||
</math></center> |
Revision as of 09:50, 19 February 2007
A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement
Where [math]\displaystyle{ \Pi\, }[/math] is assumed known and real. This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, \Pi \, }[/math] and [math]\displaystyle{ H \, }[/math].
Other types of wavemaker modes may be treated similarly.
In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form
Where [math]\displaystyle{ \Pi(Z) \, }[/math] is a known function of [math]\displaystyle{ Z \, }[/math].
Let the total velocity potential be:
where
The first term is a velocity potential that represents a plane progressive regular wave down the tank with amplitude [math]\displaystyle{ A \, }[/math], yet unknown. Thus:
with:
.
The second component potential [math]\displaystyle{ \psi\, }[/math] is by definition a decaying disturbance as [math]\displaystyle{ X \to \infty \, }[/math] and otherwise astisfies the following boundary value problem: