Long Wavelength Approximations: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Syan077 (talk | contribs)
No edit summary
 
Syan077 (talk | contribs)
No edit summary
Line 1: Line 1:
Analytical solutions of the wave-body problem formulated above are
Analytical solutions of the wave-body problem formulated above are rare. The few exceptions which find frequent use in practice are:
rare. The few exceptions which find frequent use in practice are:


* Wavemaker theory (Studied)
* Wavemaker theory (Studied)
Line 10: Line 9:
<u>Long-wavelength approximations</u>
<u>Long-wavelength approximations</u>


very frequently the length of ambient waves <math> \lambda \,</math>
very frequently the length of ambient waves <math> \lambda \,</math> is large compared to the dimension of floating bodies.
is large compared to the dimension of floating bodies.


For example the length of a wave with period <math> T=10 \
For example the length of a wave with period <math> T=10 \ \mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150m \,</math>. The beam of a ship with length <math> L=100m\,</math> can be <math>20m\,</math> as is the case for the diameter of the leg of an offshore platform.
\mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2}
\simeq 150m \,</math>. The beam of a ship with length <math>
L=100m\,</math> can be <math>20m\,</math> as is the case for the
diameter of the leg of an offshore platform.


<u>GI Taylor's formula</u>
<u>GI Taylor's formula</u>


<math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow
<math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow \,</math>
\,</math>


<math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math>
<math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math>


<center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \
<center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \,</math></center>
\mbox{Body characteristic dimension} \,</math></center>


* In the absence of viscous effects and to leading order for <math>
* In the absence of viscous effects and to leading order for <math>
\ lambda \gg B \,</math>:
\ lambda \gg B \,</math>:


<center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right)
<center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center>
\left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center>


<center><math> \bullet \ F_X: \ \mbox{Force in X-direction}
<center><math> \bullet \ F_X: \ \mbox{Force in X-direction} \,</math></center>
\,</math></center>


<center><math> \bullet \ \forall: \ \mbox{Body
<center><math> \bullet \ \forall: \ \mbox{Body displacement}\,</math></center>
displacement}\,</math></center>


<center><math> \bullet \ \A_{11}: \ \mbox{Surge added mass}
<center><math> \bullet \ \A_{11}: \ \mbox{Surge added mass} \,</math></center>
\,</math></center>


An alternative form of GI Taylor's formula for a fixed body follows
An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations:
from Euler's equations:


<center><math> \frac{\partial U}{\partial t} + U \frac{\partial
<center><math> \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial X} </math></center>
U}{\partial X} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial X}
</math></center>


Thus:
Thus:


<center><math> F_X = \left( \rho \forall + A_{11} \right) + \left(
<center><math> F_X = \left( \rho \forall + A_{11} \right) + \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right)_{X=0} </math></center>
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X}
\right)_{X=0} </math></center>


If the body is also translating in the X-direction with displacement
If the body is also translating in the X-direction with displacement <math>X_1(t)\,</math> then the total force becomes
<math>X_1(t)\,</math> then the total force becomes


<center><math> \bullet \ F_X = \left( \rho\forall+A_{11} \right)
<center><math> \bullet \ F_X = \left( \rho\forall+A_{11} \right) \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right) - A_{11} \frac{d^2X_1(t)}{dt^2} </math></center>
\left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial
X} \right) - A_{11} \frac{d^2X_1(t)}{dt^2} </math></center>


Often, when the ambient velocity <math> U\,</math> is arising from
Often, when the ambient velocity <math> U\,</math> is arising from plane progressive waves, <math> \left| U \frac{\partial U}{\partial X} \right| = 0(A^2) \,</math> and is omitted. Note that <math> U\,</math> does not include disturbance effects due to the body.
plane progressive waves, <math> \left| U \frac{\partial U}{\partial
X} \right| = 0(A^2) \,</math> and is omitted. Note that <math>
U\,</math> does not include disturbance effects due to the body.


* Applications of GI Taylor's formula in wave-body interactions
* Applications of GI Taylor's formula in wave-body interactions
Line 73: Line 50:
A) <u>Archimedean hydrostatics</u>
A) <u>Archimedean hydrostatics</u>


<center><math> P=-\rho g Z, \quad \frac{\partial P}{\partial Z} = -
<center><math> P=-\rho g Z, \quad \frac{\partial P}{\partial Z} = - \rho g \,</math></center>
\rho g \,</math></center>


<center><math> F_Z = - ( \forall + \phi ) \frac{\partial P}{\partial
<center><math> F_Z = - ( \forall + \phi ) \frac{\partial P}{\partial Z} = \rho g \forall </math></center>
Z} = \rho g \forall </math></center>


<center><math> \phi: \ \mbox{no added mass since there is no flow}
<center><math> \phi: \ \mbox{no added mass since there is no flow} </math></center>
</math></center>


* So Archimedes' formula is a special case of GI Taylor when there
* So Archimedes' formula is a special case of GI Taylor when there
is no flow. This offers an intuitive meaning to the term that
is no flow. This offers an intuitive meaning to the term that includes the body displacement.
includes the body displacement.


B) Regular waves over a circle fixed under the free surface
B) Regular waves over a circle fixed under the free surface


<center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega}
<center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX+i\omega t} \right\}, \quad K=\frac{\omega^2}{g} \, </math></center>
e^{KZ-iKX+i\omega t} \right\}, \quad K=\frac{\omega^2}{g} \,
</math></center>


<center><math>u=\frac{\partial \Phi_I}{\partial X} = \mathfrak{Re}
<center><math>u=\frac{\partial \Phi_I}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (-i K) e^{K Z - i K X + i \omega t } \right \} </math></center>
\left\{ \frac{i g A}{\omega} (-i K) e^{K Z - i K X + i \omega t }
\right \} </math></center>


<center><math> \mathfrak{Re} \left\{ \omega A e^{ - K d +i \omega t}
<center><math> \mathfrak{Re} \left\{ \omega A e^{ - K d +i \omega t} \right\}_{X=0,Z=-d} </math></center>
\right\}_{X=0,Z=-d} </math></center>


So the horizontal force on the circle is:
So the horizontal force on the circle is:


<center><math>F_X = \left( \forall + \frac{a_{11}{\rho} \right)
<center><math>F_X = \left( \forall + \frac{a_{11}{\rho} \right) \frac{\partial u}{\partial t} + O \left( Z^2 \right) </math></center>
\frac{\partial u}{\partial t} + O \left( Z^2 \right)
</math></center>


<center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2
<center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 \,</math></center>
\,</math></center>


<center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{
<center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ i\omega^2 e^{-K d + i \omega t} \right\} </math></center>
i\omega^2 e^{-K d + i \omega t} \right\} </math></center>


Thus:
Thus:


<center><math> F_X = - 2 \pi a^2 \omega^2 A e^{-K d} \sin \omega t
<center><math> F_X = - 2 \pi a^2 \omega^2 A e^{-K d} \sin \omega t \,</math></center>
\,</math></center>


* Derive the vertical force along very similar lines. It is simply
* Derive the vertical force along very similar lines. It is simply <math>90^\circ\,</math> out of phase relative to <math>F_X\,</math> with the same modulus.
<math>90^\circ\,</math> out of phase relative to <math>F_X\,</math>
with the same modulus.


C) Horizontal force on a fixed circular cylinder of draft
C) Horizontal force on a fixed circular cylinder of draft <math>T\,</math>:
<math>T\,</math>:


This case arises frequently in wave interactions with floating
This case arises frequently in wave interactions with floating offshore platforms.
offshore platforms.


Here we will evaluate <math> \frac{\partial u}{\partial t} \,</math>
Here we will evaluate <math> \frac{\partial u}{\partial t} \,</math> on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force.
on the axis of the platform and use a strip wise integration to
evaluate the total hydrodynamic force.


<center><math> u = \frac{\partial \Phi}{\partial X} = \mathfrak{Re}
<center><math> u = \frac{\partial \Phi}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (- i K) e^{KZ-i K X + i\omega t} \right\} </math></center>
\left\{ \frac{i g A}{\omega} (- i K) e^{KZ-i K X + i\omega t}
\right\} </math></center>


<center><math> = \mathfrak{Re} \left\{ \omega A e^{KZ+i\omega t}
<center><math> = \mathfrak{Re} \left\{ \omega A e^{KZ+i\omega t} \right\}_{X=0} \,</math></center>
\right\}_{X=0} \,</math></center>


<center><math> \frac{\partial u}{\partial t} (Z) = \mathfrak{Re}
<center><math> \frac{\partial u}{\partial t} (Z) = \mathfrak{Re} \left\{ \omega A ( i \omega) e^{KZ+i\omega t} \right\} </math></center>
\left\{ \omega A ( i \omega) e^{KZ+i\omega t} \right\}
</math></center>


<center><math> = - \omega^2 A e^{KZ} \sin \omega t
<center><math> = - \omega^2 A e^{KZ} \sin \omega t \,</math></center>
\,</math></center>


The differential horizontal force over a strip <math> d Z \,</math>
The differential horizontal force over a strip <math> d Z \,</math> at a depth <math> Z \,</math> becomes:
at a depth <math> Z \,</math> becomes:


<center><math> dF_Z = \rho ( \forall + a_{11} ) \frac{\partial
<center><math> dF_Z = \rho ( \forall + a_{11} ) \frac{\partial u}{\partial t} d Z \,</math></center>
u}{\partial t} d Z \,</math></center>


<center><math> \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial
<center><math> \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial t} d Z \,</math></center>
t} d Z \,</math></center>


<center><math> 2 \pi \rho a^2 \left( - \omega^2 A e^{KZ} \right)
<center><math> 2 \pi \rho a^2 \left( - \omega^2 A e^{KZ} \right) \sin \omega t d Z </math></center>
\sin \omega t d Z </math></center>


The total horizontal force over a truncated cylinder of draft
The total horizontal force over a truncated cylinder of draft <math>T\,</math> becomes:
<math>T\,</math> becomes:


<center><math> F_X = \int_{-T}^{0} dZ dF = -2\pi\rho a^2 \omega^2 A
<center><math> F_X = \int_{-T}^{0} dZ dF = -2\pi\rho a^2 \omega^2 A \sin \omega t \int_{-T}^0 e^{KZ} dZ </math></center>
\sin \omega t \int_{-T}^0 e^{KZ} dZ </math></center>


<center><math> X_1 \equiv F_X = - 2 \pi \rho a^2 \omega^2 A \sin
<center><math> X_1 \equiv F_X = - 2 \pi \rho a^2 \omega^2 A \sin \omega t \cdot \frac{1-e^{-KT}}{K} </math></center>
\omega t \cdot \frac{1-e^{-KT}}{K} </math></center>


* This is a very useful and practical result. It provides an
* This is a very useful and practical result. It provides an
estimate of the surge exciting force on one leg of a possibly
estimate of the surge exciting force on one leg of a possibly multi-leg platform
multi-leg platform


* As <math> T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K}
* As <math> T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K}
\,</math>
\,</math>


D) Horizontal force on multiple vertical cylinders in any
D) Horizontal force on multiple vertical cylinders in any arrangement:
arrangement:


The proof is essentially based on a phasing argument. Relative to
The proof is essentially based on a phasing argument. Relative to the reference frame:
the reference frame:


<center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega}
<center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX + i\omega t} \right\} \,</math></center>
e^{KZ-iKX + i\omega t} \right\} \,</math></center>


* Express the incident wave relative to the local frames by
* Express the incident wave relative to the local frames by
Line 192: Line 132:
Then relative to the i-th leg:
Then relative to the i-th leg:


<center><math> \Phi_I^{(i)} = \mathfrak{Re} \left\{ \frac{ i g
<center><math> \Phi_I^{(i)} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} e^{KZ - iK\xi_i + i\omega t} \mathbf{P}_i \right\} \quad i=1,\cdots,N </math></center>
A}{\omega} e^{KZ - iK\xi_i + i\omega t} \mathbf{P}_i \right\} \quad
i=1,\cdots,N </math></center>


Ignoring interactions between legs, which is a good approximation in
Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is:
long waves, the total exciting force on an n-cylinder platform is:


<center><math> \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i
<center><math> \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i \mathbf{X}_1 \,</math></center>
\mathbf{X}_1 \,</math></center>


The above expression gives the complex amplitude of the force with
The above expression gives the complex amplitude of the force with <math>\mathbf{X}_1\,</math> given in the single cylinder case.
<math>\mathbf{X}_1\,</math> given in the single cylinder case.


* The above technique may be easily extended to estimate the Sway
* The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort.
force and Yaw moment on n-cylinders with little extra effort.


E) Surge exciting force on a 2D section
E) Surge exciting force on a 2D section


<center><math> \Phi_I = \mathfrac{Re} \left\{ \frac{ i g A}{\omega}
<center><math> \Phi_I = \mathfrac{Re} \left\{ \frac{ i g A}{\omega} e^{KZ-iKX+i\omega t} \right\} \,</math></center>
e^{KZ-iKX+i\omega t} \right\} \,</math></center>


<center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K
<center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K ) e^{KZ-iKX+i\omega t} \right\} \,</math></center>
) e^{KZ-iKX+i\omega t} \right\} \,</math></center>


<center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{
<center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega) e^{i\omega t} \right\}_{X=0, Z=0} \,</math></center>
\frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega)
e^{i\omega t} \right\}_{X=0, Z=0} \,</math></center>


<center><math> = \mathfrak{Re} \left\{ i \omega^2 A e^{i\omega t}
<center><math> = \mathfrak{Re} \left\{ i \omega^2 A e^{i\omega t} \right\} = -\omega^2 A \sin \omega t \,</math></center>
\right\} = -\omega^2 A \sin \omega t \,</math></center>


<center><math> \mathbf{X}_1 = \left( \rho \forall + A_{11} \right)
<center><math> \mathbf{X}_1 = \left( \rho \forall + A_{11} \right) \frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho \forall + A_{11} ) \, </math></center>
\frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho
\forall + A_{11} ) \, </math></center>


* If the body section is a circle with radius <math> a\,</math>:
* If the body section is a circle with radius <math> a\,</math>:


<center><math> \rho \forall = A_{11} = \pi\rho \frac{a^2}{2}
<center><math> \rho \forall = A_{11} = \pi\rho \frac{a^2}{2} \,</math></center>
\,</math></center>


So in long waves, the surge exciting force is equally divided
So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave!
between the Froude-Krylov and the diffraction components. This is
not the case for Heave!


F) Heave exciting force on a surface piercing section
F) Heave exciting force on a surface piercing section


In long waves, the leading order effect in the exciting force is the
In long waves, the leading order effect in the exciting force is the hydrostatic contribution:
hydrostatic contribution:


<center><math>\mathbf{X}_i \sim \rho g A_w A \,</math></center>
<center><math>\mathbf{X}_i \sim \rho g A_w A \,</math></center>


where <math>A_w\,</math> is the body water plane area in 2D or 3D.
where <math>A_w\,</math> is the body water plane area in 2D or 3D. <math>A\,</math> is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force
<math>A\,</math> is the wave amplitude. This can be shown to be the
leading order contribution from the Froude-Krylov force


<center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX}
<center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} n_3 dS \,<math></center>
n_3 dS \,<math></center>


Using the Taylor series expansion:
Using the Taylor series expansion:


<center><math> e^{KZ-iKX} = 1 + ( KZ - iKX ) + O ( KB )^2
<center><math> e^{KZ-iKX} = 1 + ( KZ - iKX ) + O ( KB )^2 \,</math></center>
\,</math></center>


It is easy to verify that: <math>\mathbf{X}_3 \to \rho g A A_w
It is easy to verify that: <math>\mathbf{X}_3 \to \rho g A A_w \,</math>.
\,</math>.


The scattering contribution is of order <math> KB\,</math>. For
The scattering contribution is of order <math> KB\,</math>. For submerged bodies: <math> \mathbf{X}_3^{FK}=O(KB)\,</math>.
submerged bodies: <math> \mathbf{X}_3^{FK}=O(KB)\,</math>.

Revision as of 10:13, 4 March 2007

Analytical solutions of the wave-body problem formulated above are rare. The few exceptions which find frequent use in practice are:

  • Wavemaker theory (Studied)
  • Diffraction by a vertical circular cylinder (Studied below)
  • Long-wavelength approximations (Studied next)

Long-wavelength approximations

very frequently the length of ambient waves [math]\displaystyle{ \lambda \, }[/math] is large compared to the dimension of floating bodies.

For example the length of a wave with period [math]\displaystyle{ T=10 \ \mbox{sec}\, }[/math] is [math]\displaystyle{ \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150m \, }[/math]. The beam of a ship with length [math]\displaystyle{ L=100m\, }[/math] can be [math]\displaystyle{ 20m\, }[/math] as is the case for the diameter of the leg of an offshore platform.

GI Taylor's formula

[math]\displaystyle{ U(X,t):\ \mbox{Velocity of ambient unidirectional flow \, }[/math]

[math]\displaystyle{ P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \, }[/math]

[math]\displaystyle{ \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \, }[/math]
  • In the absence of viscous effects and to leading order for [math]\displaystyle{ \ lambda \gg B \, }[/math]:
[math]\displaystyle{ F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|^{X=0} }[/math]
[math]\displaystyle{ \bullet \ F_X: \ \mbox{Force in X-direction} \, }[/math]
[math]\displaystyle{ \bullet \ \forall: \ \mbox{Body displacement}\, }[/math]
[math]\displaystyle{ \bullet \ \A_{11}: \ \mbox{Surge added mass} \, }[/math]

An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations:

[math]\displaystyle{ \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial X} }[/math]

Thus:

[math]\displaystyle{ F_X = \left( \rho \forall + A_{11} \right) + \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right)_{X=0} }[/math]

If the body is also translating in the X-direction with displacement [math]\displaystyle{ X_1(t)\, }[/math] then the total force becomes

[math]\displaystyle{ \bullet \ F_X = \left( \rho\forall+A_{11} \right) \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right) - A_{11} \frac{d^2X_1(t)}{dt^2} }[/math]

Often, when the ambient velocity [math]\displaystyle{ U\, }[/math] is arising from plane progressive waves, [math]\displaystyle{ \left| U \frac{\partial U}{\partial X} \right| = 0(A^2) \, }[/math] and is omitted. Note that [math]\displaystyle{ U\, }[/math] does not include disturbance effects due to the body.

  • Applications of GI Taylor's formula in wave-body interactions

A) Archimedean hydrostatics

[math]\displaystyle{ P=-\rho g Z, \quad \frac{\partial P}{\partial Z} = - \rho g \, }[/math]
[math]\displaystyle{ F_Z = - ( \forall + \phi ) \frac{\partial P}{\partial Z} = \rho g \forall }[/math]
[math]\displaystyle{ \phi: \ \mbox{no added mass since there is no flow} }[/math]
  • So Archimedes' formula is a special case of GI Taylor when there

is no flow. This offers an intuitive meaning to the term that includes the body displacement.

B) Regular waves over a circle fixed under the free surface

[math]\displaystyle{ \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX+i\omega t} \right\}, \quad K=\frac{\omega^2}{g} \, }[/math]
[math]\displaystyle{ u=\frac{\partial \Phi_I}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (-i K) e^{K Z - i K X + i \omega t } \right \} }[/math]
[math]\displaystyle{ \mathfrak{Re} \left\{ \omega A e^{ - K d +i \omega t} \right\}_{X=0,Z=-d} }[/math]

So the horizontal force on the circle is:

[math]\displaystyle{ F_X = \left( \forall + \frac{a_{11}{\rho} \right) \frac{\partial u}{\partial t} + O \left( Z^2 \right) }[/math]
[math]\displaystyle{ \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 \, }[/math]
[math]\displaystyle{ \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ i\omega^2 e^{-K d + i \omega t} \right\} }[/math]

Thus:

[math]\displaystyle{ F_X = - 2 \pi a^2 \omega^2 A e^{-K d} \sin \omega t \, }[/math]
  • Derive the vertical force along very similar lines. It is simply [math]\displaystyle{ 90^\circ\, }[/math] out of phase relative to [math]\displaystyle{ F_X\, }[/math] with the same modulus.

C) Horizontal force on a fixed circular cylinder of draft [math]\displaystyle{ T\, }[/math]:

This case arises frequently in wave interactions with floating offshore platforms.

Here we will evaluate [math]\displaystyle{ \frac{\partial u}{\partial t} \, }[/math] on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force.

[math]\displaystyle{ u = \frac{\partial \Phi}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (- i K) e^{KZ-i K X + i\omega t} \right\} }[/math]
[math]\displaystyle{ = \mathfrak{Re} \left\{ \omega A e^{KZ+i\omega t} \right\}_{X=0} \, }[/math]
[math]\displaystyle{ \frac{\partial u}{\partial t} (Z) = \mathfrak{Re} \left\{ \omega A ( i \omega) e^{KZ+i\omega t} \right\} }[/math]
[math]\displaystyle{ = - \omega^2 A e^{KZ} \sin \omega t \, }[/math]

The differential horizontal force over a strip [math]\displaystyle{ d Z \, }[/math] at a depth [math]\displaystyle{ Z \, }[/math] becomes:

[math]\displaystyle{ dF_Z = \rho ( \forall + a_{11} ) \frac{\partial u}{\partial t} d Z \, }[/math]
[math]\displaystyle{ \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial t} d Z \, }[/math]
[math]\displaystyle{ 2 \pi \rho a^2 \left( - \omega^2 A e^{KZ} \right) \sin \omega t d Z }[/math]

The total horizontal force over a truncated cylinder of draft [math]\displaystyle{ T\, }[/math] becomes:

[math]\displaystyle{ F_X = \int_{-T}^{0} dZ dF = -2\pi\rho a^2 \omega^2 A \sin \omega t \int_{-T}^0 e^{KZ} dZ }[/math]
[math]\displaystyle{ X_1 \equiv F_X = - 2 \pi \rho a^2 \omega^2 A \sin \omega t \cdot \frac{1-e^{-KT}}{K} }[/math]
  • This is a very useful and practical result. It provides an

estimate of the surge exciting force on one leg of a possibly multi-leg platform

  • As [math]\displaystyle{ T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K} \, }[/math]

D) Horizontal force on multiple vertical cylinders in any arrangement:

The proof is essentially based on a phasing argument. Relative to the reference frame:

[math]\displaystyle{ \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX + i\omega t} \right\} \, }[/math]
  • Express the incident wave relative to the local frames by

introducing the phase factors:

[math]\displaystyle{ \mathbf{P}_i = e^{-iKX_i} \ }[/math]

Let:

[math]\displaystyle{ X+X_i + \xi_i \, }[/math]

Then relative to the i-th leg:

[math]\displaystyle{ \Phi_I^{(i)} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} e^{KZ - iK\xi_i + i\omega t} \mathbf{P}_i \right\} \quad i=1,\cdots,N }[/math]

Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is:

[math]\displaystyle{ \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i \mathbf{X}_1 \, }[/math]

The above expression gives the complex amplitude of the force with [math]\displaystyle{ \mathbf{X}_1\, }[/math] given in the single cylinder case.

  • The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort.

E) Surge exciting force on a 2D section

[math]\displaystyle{ \Phi_I = \mathfrac{Re} \left\{ \frac{ i g A}{\omega} e^{KZ-iKX+i\omega t} \right\} \, }[/math]
[math]\displaystyle{ u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K ) e^{KZ-iKX+i\omega t} \right\} \, }[/math]
[math]\displaystyle{ \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega) e^{i\omega t} \right\}_{X=0, Z=0} \, }[/math]
[math]\displaystyle{ = \mathfrak{Re} \left\{ i \omega^2 A e^{i\omega t} \right\} = -\omega^2 A \sin \omega t \, }[/math]
[math]\displaystyle{ \mathbf{X}_1 = \left( \rho \forall + A_{11} \right) \frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho \forall + A_{11} ) \, }[/math]
  • If the body section is a circle with radius [math]\displaystyle{ a\, }[/math]:
[math]\displaystyle{ \rho \forall = A_{11} = \pi\rho \frac{a^2}{2} \, }[/math]

So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave!

F) Heave exciting force on a surface piercing section

In long waves, the leading order effect in the exciting force is the hydrostatic contribution:

[math]\displaystyle{ \mathbf{X}_i \sim \rho g A_w A \, }[/math]

where [math]\displaystyle{ A_w\, }[/math] is the body water plane area in 2D or 3D. [math]\displaystyle{ A\, }[/math] is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force

[math]\displaystyle{ \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} n_3 dS \,\lt math\gt \lt /center\gt Using the Taylor series expansion: \lt center\gt \lt math\gt e^{KZ-iKX} = 1 + ( KZ - iKX ) + O ( KB )^2 \, }[/math]

It is easy to verify that: [math]\displaystyle{ \mathbf{X}_3 \to \rho g A A_w \, }[/math].

The scattering contribution is of order [math]\displaystyle{ KB\, }[/math]. For submerged bodies: [math]\displaystyle{ \mathbf{X}_3^{FK}=O(KB)\, }[/math].