Solution of Wave-Body Flows, Green's Theorem: Difference between revisions
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
<center><math> S \equiv S_B + S_F + S_\infty + S_H + S_E </math></center> | <center><math> S \equiv S_B + S_F + S_\infty + S_H + S_E </math></center> | ||
<math> S_B \, </math>: mean position of body surface | <math> S_B \, </math>: mean position of body surface <br> | ||
<math> S_F \, </math>: mean position of the free surface | <math> S_F \, </math>: mean position of the free surface <br> | ||
<math> S_\infty \, </math>: Bounding cylindrical surface with radius <math> R = left(X^2 +y^2 \right)^{1/2} \, </math>. Will be allowed to expand after the statement of Green's Theorem | <math> S_\infty \, </math>: Bounding cylindrical surface with radius <math> R = \left( X^2 +y^2 \right)^{1/2} \, </math>. Will be allowed to expand after the statement of Green's Theorem | ||
<math> S_H \, </math>: Seafloor (assumed flat) of a surface which will be allowed to approach <math> Z=-\infty\,</math> | <math> S_H \, </math>: Seafloor (assumed flat) of a surface which will be allowed to approach <math> Z=-\infty\,</math> <br> | ||
<math> S_E \, <math>: Spherical surface with radius <math> V = \epsilon \ , </math> centered at point <math> \vec\xi \, </math> in the fluid domain | <math> S_E \, </math>: Spherical surface with radius <math> V = \epsilon \ , </math> centered at point <math> \vec\xi \, </math> in the fluid domain <br> | ||
<math> \vec{n}\,</math>: Unit normal vector on <math>S\,</math>, at point <math>\vec{X}\,</math> on <math>S\,</math> | <math> \vec{n}\,</math>: Unit normal vector on <math>S\,</math>, at point <math>\vec{X}\,</math> on <math>S\,</math> | ||
Define two velocity potentials <math>\phi_i(\vec{X}\,</math>: | Define two velocity potentials <math>\phi_i(\vec{X})\,</math>: | ||
<math> \phi_1(\vec{X}) = \phi(\vec{X}) \equiv \,</math> Unknown complex radiation or diffraction potential | <math> \phi_1(\vec{X}) = \phi(\vec{X}) \equiv \,</math> Unknown complex radiation or diffraction potential <br> | ||
<math> \phi_2(\vec{X}) = G(\vec{X};\vec{\xi}) \equiv \,</math> Green function value at point <math>\vec{X}\,</math> due to a singularity centered at point <math>\vec{\xi}\,</math>. | <math> \phi_2(\vec{X}) = G(\vec{X};\vec{\xi}) \equiv \,</math> Green function value at point <math>\vec{X}\,</math> due to a singularity centered at point <math>\vec{\xi}\,</math>. | ||
Line 55: | Line 55: | ||
The following choice for <math>G(\vec{X};\vec{\xi})\,</math> satisfies the Laplace equation and the free-surface condition: | The following choice for <math>G(\vec{X};\vec{\xi})\,</math> satisfies the Laplace equation and the free-surface condition: | ||
<center><math> F(\vec{X},\vec{\xi}) = - \frac{1}{4\pi} \left( \frac{1}{r} + \frac{1}{r_1} - \frac{K}{2\pi} \int_0^\infty \frac{du}{u-K} e^{u(Z+\zeta)} J_0(uR) </math></center> | <center><math> F(\vec{X},\vec{\xi}) = - \frac{1}{4\pi} \left( \frac{1}{r} + \frac{1}{r_1} \right) - \frac{K}{2\pi} \int_0^\infty \frac{du}{u-K} e^{u(Z+\zeta)} J_0(uR) </math></center> | ||
where: | where: | ||
Line 73: | Line 73: | ||
<center><math> G \sim - \frac{i}{2} K e^{K(Z+\zeta)} H_0^{(2)}(KR) </math></center> | <center><math> G \sim - \frac{i}{2} K e^{K(Z+\zeta)} H_0^{(2)}(KR) </math></center> | ||
where <math> H_0^{2)} (KR)\,</math> is the Hankel function of the second kind and order zero. | where <math> H_0^{(2)} (KR)\,</math> is the Hankel function of the second kind and order zero. | ||
At <math> KR\to\infty\,</math>: | At <math> KR\to\infty\,</math>: | ||
<center><math> H_0^{(2)}(KR) \sim \sqrt | <center><math> H_0^{(2)}(KR) \sim \sqrt{\frac{2}{\pi K R}} e^{-i \left( KR-\frac{\pi}{4} \right)} + O \left( \frac{1}{R} \right) </math></center> | ||
* Therefore the real velocity potential | * Therefore the real velocity potential | ||
Line 105: | Line 105: | ||
<center><math> \phi_1 \frac{\partial\phi_2}{\partial n} - \phi_2 \frac{\partial\phi_1}{partial n} = \phi_1 \frac{\partial\phi_2}{\partial Z} - \phi_2\frac{\partial\phi_1}{\partial Z} = Y \left( \phi_1\phi_2 - \phi_2\phi_1\right) = 0 </math></center> | <center><math> \phi_1 \frac{\partial\phi_2}{\partial n} - \phi_2 \frac{\partial\phi_1}{partial n} = \phi_1 \frac{\partial\phi_2}{\partial Z} - \phi_2\frac{\partial\phi_1}{\partial Z} = Y \left( \phi_1\phi_2 - \phi_2\phi_1\right) = 0 </math></center> | ||
* It follows that upon application of Green's Theorem on the unknown potential <math> \phi_1 \ | * It follows that upon application of Green's Theorem on the unknown potential <math> \phi_1 \equiv \phi\,</math> and the wave Green function <math> \phi_2 \equiv G\,</math> only the integrals over <math> S_B\,</math> and <math>S_\epsilon\,</math> survive. | ||
* Over <math> S_H\,</math>, either <math> \frac{\partial\phi_1}{\partial n} = \frac{\partial \phi_2}{\partial n} = 0 \,</math> by virtue of the boundary condition if the water depth is finite or <math>\frac{\partial\phi_1}{\partial Z} \to 0, \ \frac{\partial\phi_2}{\partial Z}\to 0 \,</math | * Over <math> S_H\,</math>, either <math> \frac{\partial\phi_1}{\partial n} = \frac{\partial \phi_2}{\partial n} = 0 \,</math> by virtue of the boundary condition if the water depth is finite or <math>\frac{\partial\phi_1}{\partial Z} \to 0, \ \frac{\partial\phi_2}{\partial Z}\to 0 \,</math> as <math> Z\to - \infty\,</math> by virtue of the vanishing of the respective flow velocities at large depths. | ||
* There remains to interpret and evaluate the integral over <math> S_\epsilon\,</math> and <math>S_B\,</math>. Start with <math> S_\epsilon\,</math>: | * There remains to interpret and evaluate the integral over <math> S_\epsilon\,</math> and <math>S_B\,</math>. Start with <math> S_\epsilon\,</math>: | ||
<center><math> I_\epsilon = \iint_{S_\epsilon} \left( \phi_1 | <center><math> I_\epsilon = \iint_{S_\epsilon} \left( \phi_1 \frac{\partial\phi_2}{\partial n} - \phi_2 \frac{\partial\phi_1}{\partial n} \right) dS </math></center> | ||
or: | or: | ||
<center><math> I_\epsilon = \iint_{S_\epsilon} \left( \phi | <center><math> I_\epsilon = \iint_{S_\epsilon} \left( \phi \frac{\partial G}{\partial n} - G \frac{\partial\phi}{\partial n} \right) dS_X </math></center> | ||
Note that the integral over <math> S_\epsilon\,</math> is over the <math> \vec{X}\,</math> variable with <math> \vec{\xi}\,</math> being the fixed point where the source is centered. | Note that the integral over <math> S_\epsilon\,</math> is over the <math> \vec{X}\,</math> variable with <math> \vec{\xi}\,</math> being the fixed point where the source is centered. | ||
Line 130: | Line 130: | ||
In summary: | In summary: | ||
<center><math> \phi(\vec{\xi}) + \iint_{S_B} \left[ \phi(\vec{X}) \frac{\partial G(\vec{X};\vec{\xi})}{\partial n_X} - G(\vec{X}; | <center><math> \phi(\vec{\xi}) + \iint_{S_B} \left[ \phi(\vec{X}) \frac{\partial G(\vec{X};\vec{\xi})}{\partial n_X} - G(\vec{X}; \vec{\xi}) \frac{\partial\phi}{\partial n_X} \right] d S_n = 0 </math></center> | ||
on <math> S_B: \quad \frac{\partial\phi}{\partial n_X} = V(X) = \,</math> known from the boundary condition of the radiation and diffraction problems. | on <math> S_B: \quad \frac{\partial\phi}{\partial n_X} = V(X) = \,</math> known from the boundary condition of the radiation and diffraction problems. | ||
Line 136: | Line 136: | ||
* It follows that a relationship is obtained between the value of <math> \phi(\vec{\xi})\,</math> at some point in the fluid domain and its values <math> \phi_(\vec{X})\,</math> and normal derivatives over the body boundary: | * It follows that a relationship is obtained between the value of <math> \phi(\vec{\xi})\,</math> at some point in the fluid domain and its values <math> \phi_(\vec{X})\,</math> and normal derivatives over the body boundary: | ||
<center><math> \phi(\vec{\xi}) + \iint_{S_B} \phi(\vec{X}) \frac{\partial G ( \vec{X}; \vec{\xi} ) {\partial n_X} d S_X = \iint_{S_B} G (\vec{X}; | <center><math> \phi(\vec{\xi}) + \iint_{S_B} \phi(\vec{X}) \frac{\partial G ( \vec{X}; \vec{\xi} )} {\partial n_X} d S_X = \iint_{S_B} G (\vec{X};\vec{\xi}) B(\vec{X}) d S_X </math></center> | ||
Stated differently, knowledge of <math> \phi\,</math> and <math> \frac{\partial\phi}{\partial n}\,</math> over the body boundary allows the determination of <math> \phi\,</math> and upon differentiation of <math>\nabla\phi\,</math> in the fluid domain. | Stated differently, knowledge of <math> \phi\,</math> and <math> \frac{\partial\phi}{\partial n}\,</math> over the body boundary allows the determination of <math> \phi\,</math> and upon differentiation of <math>\nabla\phi\,</math> in the fluid domain. | ||
Line 160: | Line 160: | ||
In the absence of the free surface, the derivation of the Green integral equation remains almost unchanged using <math>G\,</math>: | In the absence of the free surface, the derivation of the Green integral equation remains almost unchanged using <math>G\,</math>: | ||
<center><math> \phi_2(\vec{X}) = - \frac{1}{4\ | <center><math> \phi_2(\vec{X}) = - \frac{1}{4\pi} \left| \vec{X} - \vec{\xi} \right|^{-1} \equiv G(\vec{X}; \vec{\xi} </math></center> | ||
The Rankine source as the Green function and using the property that as <math> R\to \infty\,</math> | The Rankine source as the Green function and using the property that as <math> R\to \infty\,</math> | ||
For closed boundaries <math>S_B\,</math> with no shed wakes responsible for lifting effects the resulting integral equation for <math>\phi(\vec{X}\,</math> over the body boundary becomes: | For closed boundaries <math>S_B\,</math> with no shed wakes responsible for lifting effects the resulting integral equation for <math>\phi(\vec{X})\,</math> over the body boundary becomes: | ||
<center><math> \frac{1}{2} \phi)(\vec{\xi}) + \iint_{S_B} \phi(\vec{X}) \frac{\partial G(\vec{X};\vec{\xi})}{\partial n_X} d S_X = \iint_{S_B} G(\vec{X};\vec{\xi}) V(\vec{X}) d S_X </math></center> | <center><math> \frac{1}{2} \phi)(\vec{\xi}) + \iint_{S_B} \phi(\vec{X}) \frac{\partial G(\vec{X};\vec{\xi})}{\partial n_X} d S_X = \iint_{S_B} G(\vec{X};\vec{\xi}) V(\vec{X}) d S_X </math></center> |
Revision as of 10:02, 16 March 2007
Solution of wave-body interaction problems
- Two types of wave body interaction problems are encountered frequently in applications and solved by the methods described in this section
- Zero-speed linear wave body interactions in the frequency domain in 2D and 3D
- Forward-speed seakeeping problems in the frequency or time domain in three dimensions (Linear & nonlinear)
- A consensus has been reached over the past two decades that the most efficient and robust solution methods are based on Green's Theorem using either a wave-source potential or the Rankine source as the Green function.
- The numerical solution of the resulting integral equations in practice is in almost all cases carried out by panel methods.
Frequency-domain radiation-diffraction. U=0
Boundary-value problem:
- Green's Theorem generates a boundary integral equation for the complex potential [math]\displaystyle{ \phi\, }[/math] over the body boundary [math]\displaystyle{ S_B\, }[/math] for the proper choice of the Green function:
For any [math]\displaystyle{ \phi_1, \ \phi_2\, }[/math] that solve the Laplace equation in a closed volume [math]\displaystyle{ V\, }[/math].
Define the volume [math]\displaystyle{ V\, }[/math] and [math]\displaystyle{ S\, }[/math] as follows:
The fluid volume [math]\displaystyle{ V\, }[/math] is enclosed by the union of several surfaces
[math]\displaystyle{ S_B \, }[/math]: mean position of body surface
[math]\displaystyle{ S_F \, }[/math]: mean position of the free surface
[math]\displaystyle{ S_\infty \, }[/math]: Bounding cylindrical surface with radius [math]\displaystyle{ R = \left( X^2 +y^2 \right)^{1/2} \, }[/math]. Will be allowed to expand after the statement of Green's Theorem
[math]\displaystyle{ S_H \, }[/math]: Seafloor (assumed flat) of a surface which will be allowed to approach [math]\displaystyle{ Z=-\infty\, }[/math]
[math]\displaystyle{ S_E \, }[/math]: Spherical surface with radius [math]\displaystyle{ V = \epsilon \ , }[/math] centered at point [math]\displaystyle{ \vec\xi \, }[/math] in the fluid domain
[math]\displaystyle{ \vec{n}\, }[/math]: Unit normal vector on [math]\displaystyle{ S\, }[/math], at point [math]\displaystyle{ \vec{X}\, }[/math] on [math]\displaystyle{ S\, }[/math]
Define two velocity potentials [math]\displaystyle{ \phi_i(\vec{X})\, }[/math]:
[math]\displaystyle{ \phi_1(\vec{X}) = \phi(\vec{X}) \equiv \, }[/math] Unknown complex radiation or diffraction potential
[math]\displaystyle{ \phi_2(\vec{X}) = G(\vec{X};\vec{\xi}) \equiv \, }[/math] Green function value at point [math]\displaystyle{ \vec{X}\, }[/math] due to a singularity centered at point [math]\displaystyle{ \vec{\xi}\, }[/math].
Two types of Green functions will be used:
Rankine source: [math]\displaystyle{ \nabla_X^2 G = 0 \, }[/math]
Note that the flux of fluid emitted from [math]\displaystyle{ \vec{\xi}\, }[/math] is equal to [math]\displaystyle{ 1\, }[/math].
- This Rankine source and its gradient with respect to [math]\displaystyle{ \vec\xi\, }[/math] (dipoles) is the Green function that will be used in the ship seakeeping problem.
- Havelock's wave source potential
...Also known as the [math]\displaystyle{ U=0\, }[/math] wave Green function in the frequency domain.
- Satisfies the free surface condition and near [math]\displaystyle{ \vec\xi=0\, }[/math] behaves like a Rankine source:
The following choice for [math]\displaystyle{ G(\vec{X};\vec{\xi})\, }[/math] satisfies the Laplace equation and the free-surface condition:
where:
Verify that with respect to the argument [math]\displaystyle{ \vec{X}\, }[/math], the velocity potential [math]\displaystyle{ \phi_2(\vec{X}) \equiv G(\vec{X};\vec{\xi})\, }[/math] satisfies the free surface condition:
As [math]\displaystyle{ KR\to\infty\, }[/math]:
where [math]\displaystyle{ H_0^{(2)} (KR)\, }[/math] is the Hankel function of the second kind and order zero.
At [math]\displaystyle{ KR\to\infty\, }[/math]:
- Therefore the real velocity potential
Represents outgoing ring waves of the form [math]\displaystyle{ \propto e^{i(\omega T -KR)}\, }[/math] hence satisfying the radiation condition.
- A similar far-field radiation condition is satisfied by the velocity potential [math]\displaystyle{ \phi_1(\vec{X})\equiv\phi(\vec{X})\, }[/math]
It follows that on [math]\displaystyle{ S_\infty\, }[/math]:
Therefore:
with errors that decay like [math]\displaystyle{ R^{-3/2}\, }[/math], hence faster than [math]\displaystyle{ R\, }[/math], which is the rate at which the surface [math]\displaystyle{ S_\infty\, }[/math] grows as [math]\displaystyle{ R\to\infty\, }[/math].
On [math]\displaystyle{ S_F(Z=0)\, }[/math]:
- It follows that upon application of Green's Theorem on the unknown potential [math]\displaystyle{ \phi_1 \equiv \phi\, }[/math] and the wave Green function [math]\displaystyle{ \phi_2 \equiv G\, }[/math] only the integrals over [math]\displaystyle{ S_B\, }[/math] and [math]\displaystyle{ S_\epsilon\, }[/math] survive.
- Over [math]\displaystyle{ S_H\, }[/math], either [math]\displaystyle{ \frac{\partial\phi_1}{\partial n} = \frac{\partial \phi_2}{\partial n} = 0 \, }[/math] by virtue of the boundary condition if the water depth is finite or [math]\displaystyle{ \frac{\partial\phi_1}{\partial Z} \to 0, \ \frac{\partial\phi_2}{\partial Z}\to 0 \, }[/math] as [math]\displaystyle{ Z\to - \infty\, }[/math] by virtue of the vanishing of the respective flow velocities at large depths.
- There remains to interpret and evaluate the integral over [math]\displaystyle{ S_\epsilon\, }[/math] and [math]\displaystyle{ S_B\, }[/math]. Start with [math]\displaystyle{ S_\epsilon\, }[/math]:
or:
Note that the integral over [math]\displaystyle{ S_\epsilon\, }[/math] is over the [math]\displaystyle{ \vec{X}\, }[/math] variable with [math]\displaystyle{ \vec{\xi}\, }[/math] being the fixed point where the source is centered.
Near [math]\displaystyle{ \vec{\xi}\, }[/math]:
In the limit as [math]\displaystyle{ r\to 0 \, }[/math] the integrand over the sphere [math]\displaystyle{ S_\epsilon\, }[/math] becomes spherically symmetric and with vanishing errors
In summary:
on [math]\displaystyle{ S_B: \quad \frac{\partial\phi}{\partial n_X} = V(X) = \, }[/math] known from the boundary condition of the radiation and diffraction problems.
- It follows that a relationship is obtained between the value of [math]\displaystyle{ \phi(\vec{\xi})\, }[/math] at some point in the fluid domain and its values [math]\displaystyle{ \phi_(\vec{X})\, }[/math] and normal derivatives over the body boundary:
Stated differently, knowledge of [math]\displaystyle{ \phi\, }[/math] and [math]\displaystyle{ \frac{\partial\phi}{\partial n}\, }[/math] over the body boundary allows the determination of [math]\displaystyle{ \phi\, }[/math] and upon differentiation of [math]\displaystyle{ \nabla\phi\, }[/math] in the fluid domain.
In order to determine [math]\displaystyle{ \phi(\vec{X})\, }[/math] on the body boundary [math]\displaystyle{ S_B\, }[/math], simply allow [math]\displaystyle{ \vec{\xi}\to S_B\, }[/math] in which case the sphere [math]\displaystyle{ S_\epsilon\, }[/math] becomes a [math]\displaystyle{ \frac{1}{2}\, }[/math] sphere as [math]\displaystyle{ \epsilon\to 0 \, }[/math]:
- Note that [math]\displaystyle{ \vec{\xi}\, }[/math] is a fixed point where the point source is centered and [math]\displaystyle{ \vec{X}\, }[/math] is a dummy integration variable moving over the body boundary [math]\displaystyle{ S_B\, }[/math].
- The reduction of Green's Theorem derived above survives almost identically with a factor of [math]\displaystyle{ \frac{1}{2}\, }[/math] now multiplying the [math]\displaystyle{ I_\epsilon\, }[/math] integral since only [math]\displaystyle{ \frac{1}{2}\, }[/math] of the [math]\displaystyle{ S_\epsilon\, }[/math] surface lies in the fluid domain in the limit as [math]\displaystyle{ \epsilon\to 0 \, }[/math] and for a body surface which is smooth. It follows that:
where now both [math]\displaystyle{ \vec{X}\, }[/math] and [math]\displaystyle{ \vec{\xi}\, }[/math] lie no the body surface. This becomes an integral equation for [math]\displaystyle{ \phi(\vec{X})\, }[/math] over a surface [math]\displaystyle{ S_B\, }[/math] of boundary extent. Its solution is carried out with panel methods described below.
The interpretation of the derivative under the integral sign as follows:
where derivatives are taken w.r.t. the first argument for a point source centered at point [math]\displaystyle{ \vec{\xi}\, }[/math].
Infinite domain potential flow solutions
In the absence of the free surface, the derivation of the Green integral equation remains almost unchanged using [math]\displaystyle{ G\, }[/math]:
The Rankine source as the Green function and using the property that as [math]\displaystyle{ R\to \infty\, }[/math]
For closed boundaries [math]\displaystyle{ S_B\, }[/math] with no shed wakes responsible for lifting effects the resulting integral equation for [math]\displaystyle{ \phi(\vec{X})\, }[/math] over the body boundary becomes:
with
Example: uniform flow past [math]\displaystyle{ S_B\, }[/math]
So the RHS of the Green equation becomes:
.
Ocean Wave Interaction with Ships and Offshore Energy Systems