Graf's Addition Theorem: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Graf's addition theorem for Bessel functions | Graf's addition theorem for Bessel functions is given in | ||
[[Abramowitz and Stegun 1964]], is | [[Abramowitz and Stegun 1964]]. It is a special case of a general addition theorem called Neumann's addition theorem. Details | ||
can be found [http://www.math.sfu.ca/~cbm/aands/page_363.htm Abramowitz and Stegun 1964 online]. We express the theorem | |||
in the following form | |||
<center><math> | |||
C_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | |||
\sum_{\mu = - \infty}^{\infty} C_{\nu + \mu} (\eta R_{jl}) \, | |||
J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, | |||
\quad j \neq l, | |||
</math></center> | |||
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | |||
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>. | |||
which is valid provided that <math>r_l < R_{jl}</math>. | |||
Here, <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>. | |||
Explicit versions of the theorem are given below, | |||
<center><math> | <center><math> | ||
H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | ||
Line 12: | Line 26: | ||
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, | (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, | ||
</math></center> | </math></center> | ||
This theorem form the basis for [[Kagemoto and Yue Interaction Theory]]. | |||
This theorem form the basis for [[Kagemoto and Yue Interaction Theory] | |||
[[Category:Numerical Methods]] | [[Category:Numerical Methods]] | ||
[[Category:Linear Water-Wave Theory]] | [[Category:Linear Water-Wave Theory]] |
Revision as of 10:48, 28 March 2007
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ Y_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math]. which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math]. Here, [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of [math]\displaystyle{ \Delta_{l} }[/math] in the local coordinates of [math]\displaystyle{ \Delta_{j} }[/math].
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.