Template:Separation of variables for a dock: Difference between revisions
Line 2: | Line 2: | ||
== Separation of Variables for a Dock == | == Separation of Variables for a Dock == | ||
The separation of variables equation for a dock | |||
a | |||
<center> | <center> | ||
<math> | <math> | ||
\ | \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} + k^2 Z =0. | ||
</math> | </math> | ||
</center> | </center> | ||
subject to the boundary conditions | |||
<center> | <center> | ||
<math> | <math> | ||
\ | \frac{dZ}{dz}(-h) = 0 | ||
</math> | </math> | ||
</center> | </center> | ||
and | |||
and | |||
<center> | <center> | ||
<math> | <math> | ||
\ | \frac{dZ}{dz}(0) = 0 | ||
</math> | </math> | ||
</center> | </center> | ||
The solution is | |||
<math>\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math>. We define | <math>\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math>. We define | ||
<center> | <center> |
Revision as of 04:25, 26 August 2008
Separation of Variables for a Dock
The separation of variables equation for a dock
[math]\displaystyle{ \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]
and
[math]\displaystyle{ \frac{dZ}{dz}(0) = 0 }[/math]
The solution is [math]\displaystyle{ \kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math]. We define
[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region and
[math]\displaystyle{ \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]
as the vertical eigenfunction of the potential in the dock covered region. For later reference, we note that:
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}h\sin k_{m}h+k_{m}h}{k_{m}\cos ^{2}k_{m}h}\right) }[/math]
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn} }[/math]
where
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where