KdV Cnoidal Wave Solutions: Difference between revisions
No edit summary |
The KdV equation has two qualitatively different types of permanent form travelling wave solution. These are referred to as cnoidal waves and solitary waves. |
||
Line 1: | Line 1: | ||
[ | =Travelling Wave Solutions of the KdV Equation= | ||
==KdV equation in <math>(z,\tau)</math> space == | |||
Assume we have wave travelling with speed <math> V_0 </math> without change of form, | |||
<center><math> H(z,\tau)=H(z-V_0\tau) </math></center> | |||
and substitute into KdV equation then we obtain | |||
<center><math> | |||
-2V_oH_\xi+3HH_\xi+\frac{1}{3}H_{\xi\xi\xi}=0</math></center> | |||
where <math>\xi=z-V_0\tau </math> is the travelling wave coordinate. | |||
We integrate this equation twice with respect to <math>\xi</math> to give | |||
<center><math> \frac{1}{6}H_\xi^2=V_oH^2-\frac{1}{2}H^3+D_1H+D_2=f(H,V_0,D_1,D_2) </math></center> where D_1 and D_2 are constants of integration. | |||
==Standardization of KdV equation== | |||
We define <math>f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2</math>, | |||
so <math>f(H)=\frac{1}{6}H_\xi^2 </math> | |||
It turns out that we require 3 real roots to obtain periodic solutions. | |||
Let roots be <math> H_1 \leq H_2 \leq H_3</math>. | |||
We can imagine the graph of cubic function which has 3 real roots and we can now write a function | |||
<center><math> f(H)= \frac{-1}{2}(H-H_1)(H-H_2)(H-H_3)</math></center> | |||
From the equation <math>f(H)=\frac{1}{6}H_\xi^2</math>, we require <math>f(H)>0.</math> | |||
We are only interested in solution for <math>H_2 < H < H_3</math> and we need <math>H_2 < H_3</math>. | |||
and now solve equation in terms of the roots <math>H_i,</math> | |||
We define <math>X=\frac{H}{H_3}</math>, and obtain | |||
<center><math>X_\xi^2=3H_3(X-X_1)(X-X_2)(1-X)</math></center> | |||
where <math>X_i=\frac{H_i}{H}</math> | |||
crest to be at <math>\xi=0 and X(0)=0</math> | |||
and a further variable Y via | |||
<center><math> X=1+(X_2-1)sin^2(Y) </math></center> | |||
<center><math>Y_\xi^2=\frac{3}{4}H_3(1-X_1)\left\{ 1-\frac{(1-X_2)}{(1-X_1)}sin(Y)^2 \right\} | |||
...(1)</math></center> | |||
so <math>Y(0)=0.</math> | |||
and <center><math>\frac{dY}{d\xi}=\sqrt{l(1-k^2sin^2(Y))},</math></center> | |||
which is separable. | |||
In order to get this into a completely standard form we define | |||
<center><math>k^2=\frac{1-X_2}{1-X_1}, l=\frac{3}{4}H_3(1-X_1) | |||
...(2) </math></center> | |||
Clearly, <math>0 \leq k^2 \leq 1</math> and <math>l>0.</math> | |||
==Solution of the KdV equation== | |||
A simple quadrature of equation (1) subject to the condition (2) the gives us | |||
<center><math>\int_{0}^\bar{Y} \frac{dS}{\sqrt{l(1-k^2sin^2(Y))}} = \int_{0}^\bar{Y} dS</math></center> | |||
Jacobi elliptic function <math> y= sn(x,k)</math> can be written in the form | |||
<center><math> x= \int_{0}^y \frac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}} , for 0 < k^2 < 1</math></center> | |||
or equivalently | |||
<center><math> x=\int_{0}^{sin^{-1}y} \frac{dS}{\sqrt{1-k^2sin^2(s)}} </math></center> | |||
Now we can write Y with fixed values of x,k as | |||
<center><math> \bar{Y}=sin^{-1}(sn(\sqrt{l}\int_0^{\bar{Y}} d\xi,k)),</math></center> | |||
<center><math> sin(Y)=sn(\sqrt{l}\xi;k),</math></center> | |||
and hence | |||
<center><math>X=1+(X_2-1)sn^2(\sqrt{l}\xi;k)</math></center> | |||
<math>cn(x;k)</math> is another Jacobi elliptic function with <math>cn^2+sn^2=1</math>, and waves are called "cnoidal waves". | |||
Using the result <math>cn^2+sn^2=1</math>, our final result can be expressed in the form | |||
<center><math>H=H_2+(H_3-H_2)cn^2\left\{ \left[ \frac{3}{4}(H_3-H_1) \right]^{\frac{1}{2}}\xi;k \right\} </math></center> |
Revision as of 04:34, 14 October 2008
Travelling Wave Solutions of the KdV Equation
KdV equation in [math]\displaystyle{ (z,\tau) }[/math] space
Assume we have wave travelling with speed [math]\displaystyle{ V_0 }[/math] without change of form,
and substitute into KdV equation then we obtain
where [math]\displaystyle{ \xi=z-V_0\tau }[/math] is the travelling wave coordinate.
We integrate this equation twice with respect to [math]\displaystyle{ \xi }[/math] to give
where D_1 and D_2 are constants of integration.
Standardization of KdV equation
We define [math]\displaystyle{ f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2 }[/math], so [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math]
It turns out that we require 3 real roots to obtain periodic solutions. Let roots be [math]\displaystyle{ H_1 \leq H_2 \leq H_3 }[/math].
We can imagine the graph of cubic function which has 3 real roots and we can now write a function
From the equation [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math], we require [math]\displaystyle{ f(H)\gt 0. }[/math]
We are only interested in solution for [math]\displaystyle{ H_2 \lt H \lt H_3 }[/math] and we need [math]\displaystyle{ H_2 \lt H_3 }[/math].
and now solve equation in terms of the roots [math]\displaystyle{ H_i, }[/math]
We define [math]\displaystyle{ X=\frac{H}{H_3} }[/math], and obtain
where [math]\displaystyle{ X_i=\frac{H_i}{H} }[/math]
crest to be at [math]\displaystyle{ \xi=0 and X(0)=0 }[/math]
and a further variable Y via
so [math]\displaystyle{ Y(0)=0. }[/math]
and
which is separable.
In order to get this into a completely standard form we define
Clearly, [math]\displaystyle{ 0 \leq k^2 \leq 1 }[/math] and [math]\displaystyle{ l\gt 0. }[/math]
Solution of the KdV equation
A simple quadrature of equation (1) subject to the condition (2) the gives us
Jacobi elliptic function [math]\displaystyle{ y= sn(x,k) }[/math] can be written in the form
or equivalently
Now we can write Y with fixed values of x,k as
and hence
[math]\displaystyle{ cn(x;k) }[/math] is another Jacobi elliptic function with [math]\displaystyle{ cn^2+sn^2=1 }[/math], and waves are called "cnoidal waves".
Using the result [math]\displaystyle{ cn^2+sn^2=1 }[/math], our final result can be expressed in the form