Eigenfunctions for a Uniform Free Beam: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 11: Line 11:
\end{matrix}</math></center>
\end{matrix}</math></center>
This solution is discussed further in [[Eigenfunctions for a Free Beam]].
This solution is discussed further in [[Eigenfunctions for a Free Beam]].
Expanding
<center>
<math>
\frac{\partial \phi}{\partial z} = i\omega \sum_{n=0}^{\infty} \xi_n w_n
</math>
</center>

Revision as of 21:25, 6 November 2008

We can find a the eigenfunction which satisfy

[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n }[/math]

plus the edge conditions.

[math]\displaystyle{ \begin{matrix} \frac{\partial^3}{\partial x^3} \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \frac{\partial^2}{\partial x^2} \frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

This solution is discussed further in Eigenfunctions for a Free Beam.