Template:Derivation of reflection and transmission in two dimensions: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave. | The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave. Conservation of energy means that <math> |R|^2+|T|^2=1\,</math>. | ||
[[Image:Square_volume.png|600px|right|thumb|frame|A diagram depicting the area <math>\Omega\,</math> which is bounded by the rectangle <math>\partial \Omega \,</math>. The rectangle <math>\partial \Omega \,</math> is bounded by <math> -h \leq z \leq 0 \,</math> and <math>-\infty \leq x \leq \infty \,</math> or <math>-N \leq x \leq N\,</math>]] | [[Image:Square_volume.png|600px|right|thumb|frame|A diagram depicting the area <math>\Omega\,</math> which is bounded by the rectangle <math>\partial \Omega \,</math>. The rectangle <math>\partial \Omega \,</math> is bounded by <math> -h \leq z \leq 0 \,</math> and <math>-\infty \leq x \leq \infty \,</math> or <math>-N \leq x \leq N\,</math>]] | ||
We can calculate the Reflection and Transmission coefficients | We can calculate the Reflection and Transmission coefficients by | ||
applying Green's theorem to <math>\phi\,</math> and <math>\phi^{\mathrm{I}}\,</math> | |||
{{incident plane wave 2d definition}} | |||
We assume that <math>A=1</math>. This gives us | |||
<center><math> | <center><math> | ||
\iint_{\Omega}(\phi\nabla^2\phi^{\mathrm{I}} - \phi^{\mathrm{I}}\nabla^2\phi)\mathrm{d}x\mathrm{d}z | |||
= \int_{\partial\Omega}(\phi\frac{\partial\phi^{\rm I}}{\partial n} - \phi^{\rm I}\frac{\partial\phi}{\partial n})\mathrm{d}l, | = \int_{\partial\Omega}(\phi\frac{\partial\phi^{\rm I}}{\partial n} - \phi^{\rm I}\frac{\partial\phi}{\partial n})\mathrm{d}l = 0, | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
Line 13: | Line 15: | ||
- 2k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z. | - 2k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z. | ||
</math></center><br\> | </math></center><br\> | ||
where <math> k_0 \,</math> is the first imaginery root of the dispersion equation and the incident wave is of the form: <math> \phi^I=\phi_0(z)e^{-ikx} \,</math | where <math> k_0 \,</math> is the first imaginery root of the dispersion equation and the incident wave is of the form: <math> \phi^I=\phi_0(z)e^{-ikx} \,</math> | ||
Therefore, in the case of a floating plate (where z=0): | Therefore, in the case of a floating plate (where z=0): | ||
<center><math> | <center><math> |
Revision as of 08:41, 27 November 2009
The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave. Conservation of energy means that [math]\displaystyle{ |R|^2+|T|^2=1\, }[/math].

We can calculate the Reflection and Transmission coefficients by applying Green's theorem to [math]\displaystyle{ \phi\, }[/math] and [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,
where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and
We assume that [math]\displaystyle{ A=1 }[/math]. This gives us
<br\>
where [math]\displaystyle{ k_0 \, }[/math] is the first imaginery root of the dispersion equation and the incident wave is of the form: [math]\displaystyle{ \phi^I=\phi_0(z)e^{-ikx} \, }[/math] Therefore, in the case of a floating plate (where z=0):
and using a wave incident from the right we obtain