Sommerfeld Radiation Condition: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{{complete pages}}
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
outgoing at infinity. It depends on the convention regarding whether the time dependence
outgoing at infinity. It depends on the convention regarding whether the time dependence

Revision as of 19:15, 8 February 2010


This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math] Assuming the former (which is the standard convention on this wiki) In two-dimensions the condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.

In three-dimensions the condition is

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]

If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math] then we have in two-dimensions

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

and in three-dimensions

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]