|
|
Line 239: |
Line 239: |
| integration weights depending on the discretisation of the continuous variable. | | integration weights depending on the discretisation of the continuous variable. |
|
| |
|
| =Calculation of the diffraction transfer matrix for bodies of arbitrary geometry=
| |
|
| |
|
| To calculate the diffraction transfer matrix in infinite depth, we
| |
| require the representation of the [[Infinite Depth]], [[Free-Surface Green Function]]
| |
| in cylindrical eigenfunctions,
| |
| <center><math> (green_inf)\begin{matrix}
| |
| G(r,\theta,z;s,\varphi,c) =& \frac{\mathrm{i}\alpha}{2} \, \mathrm{e}^{\alpha (z+c)}
| |
| \sum_{\nu=-\infty}^{\infty} H_\nu^{(1)}(\alpha r) J_\nu(\alpha s) \mathrm{e}^{\mathrm{i}\nu
| |
| (\theta - \varphi)} \\
| |
| +& \frac{1}{\pi^2} \int\limits_0^{\infty}
| |
| \psi(z,\eta) \frac{\eta^2}{\eta^2+\alpha^2} \psi(c,\eta)
| |
| \sum_{\nu=-\infty}^{\infty} K_\nu(\eta r) I_\nu(\eta s) \mathrm{e}^{\mathrm{i}\nu
| |
| (\theta - \varphi)} \mathrm{d}\eta,
| |
| \end{matrix}
| |
| </math></center>
| |
| <math>r > s</math>, given by [[Peter and Meylan 2004b]].
| |
|
| |
| We assume that we have represented the scattered potential in terms of
| |
| the source strength distribution <math>\varsigma^j</math> so that the scattered
| |
| potential can be written as
| |
| <center><math> (int_eq_1)
| |
| \phi_j^\mathrm{S}(\mathbf{y}) = \int\limits_{\Gamma_j} G
| |
| (\mathbf{y},\mathbf{\zeta}) \, \varsigma^j (\mathbf{\zeta})
| |
| \mathrm{d}\sigma_\mathbf{\zeta}, \quad \mathbf{y} \in D,
| |
| </math></center>
| |
| where <math>D</math> is the volume occupied by the water and <math>\Gamma_j</math> is the
| |
| immersed surface of body <math>\Delta_j</math>. The source strength distribution
| |
| function <math>\varsigma^j</math> can be found by solving an
| |
| integral equation. The integral equation is described in
| |
| [[Weh_Lait]] and numerical methods for its solution are outlined in
| |
| [[Sarp_Isa]].
| |
| Substituting the eigenfunction expansion of the Green's function
| |
| (green_inf) into (int_eq_1), the scattered potential can
| |
| be written as
| |
| <center><math>\begin{matrix}
| |
| &\phi_j^\mathrm{S}(r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
| |
| \infty}^{\infty} \bigg[ \frac{\mathrm{i}\alpha}{2}
| |
| \int\limits_{\Gamma_j} \mathrm{e}^{\alpha c} J_\nu(\alpha s) \mathrm{e}^{-\mathrm{i}\nu
| |
| \varphi} \varsigma^j(\mathbf{\zeta})
| |
| \mathrm{d}\sigma_\mathbf{\zeta} \bigg] H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}\\
| |
| & \, + \int\limits_{0}^{\infty} \psi(z,\eta) \sum_{\nu = -
| |
| \infty}^{\infty} \bigg[ \frac{1}{\pi^2} \frac{\eta^2
| |
| }{\eta^2 + \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_\nu(\eta s)
| |
| \mathrm{e}^{-\mathrm{i}\nu \varphi} \varsigma^j({\mathbf{\zeta}})
| |
| \mathrm{d}\sigma_{\mathbf{\zeta}} \bigg] K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta,
| |
| \end{matrix}</math></center>
| |
| where
| |
| <math>\mathbf{\zeta}=(s,\varphi,c)</math> and <math>r>s</math>.
| |
| This restriction implies that the eigenfunction expansion is only valid
| |
| outside the escribed cylinder of the body.
| |
|
| |
| The columns of the diffraction transfer matrix are the coefficients of
| |
| the eigenfunction expansion of the scattered wavefield due to the
| |
| different incident modes of unit-amplitude. The elements of the
| |
| diffraction transfer matrix of a body of arbitrary shape are therefore given by
| |
| <center><math> (B_elem)
| |
| ({\mathbf B}_j)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
| |
| \mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p \varphi} \varsigma_q^j(\mathbf{\zeta})
| |
| \mathrm{d}\sigma_\mathbf{\zeta}
| |
| </math></center>
| |
| and
| |
| <center><math>
| |
| ({\mathbf B}_j)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
| |
| \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
| \varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
| </math></center>
| |
| for the propagating and the decaying modes respectively, where
| |
| <math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
| |
| due to an incident potential of mode <math>q</math> of the form
| |
| <center><math> (test_modesinf)
| |
| \phi_q^{\mathrm{I}}(s,\varphi,c) = \mathrm{e}^{\alpha c} H_q^{(1)} (\alpha
| |
| s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
| </math></center>
| |
| for the propagating modes, and
| |
| <center><math>
| |
| \phi_q^{\mathrm{I}}(s,\varphi,c) = \psi(c,\eta) K_q (\eta s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
| </math></center>
| |
| for the decaying modes.
| |
|
| |
|
| =The diffraction transfer matrix of rotated bodies= | | =The diffraction transfer matrix of rotated bodies= |
Introduction
Kagemoto and Yue Interaction Theory applies in Finite Depth water.
The theory was extended by Peter and Meylan 2004 to Infinite Depth water
and we present this theory here.
Eigenfunction expansion of the potential
The scattered potential of body [math]\displaystyle{ \Delta_j }[/math] can be expanded in
cylindrical eigenfunctions,
[math]\displaystyle{ (basisrep_out)
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
\infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
\theta_j}
+ \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta}
\sin \eta z \big) \sum_{\nu = -
\infty}^{\infty} A_{\nu}^j (\eta) K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu
\theta_j} \mathrm{d}\eta,
}[/math]
where the coefficients [math]\displaystyle{ A_{0 \nu}^j }[/math] for the propagating modes are
discrete and the coefficients [math]\displaystyle{ A_{\nu}^j (\cdot) }[/math] for the decaying
modes are functions. [math]\displaystyle{ H_\nu^{(1)} }[/math] and [math]\displaystyle{ K_\nu }[/math] are the Hankel function
of the first kind and the modified Bessel function of the second kind
respectively, both of order [math]\displaystyle{ \nu }[/math] as defined in Abramowitz and Stegun 1964.
The incident potential upon body [math]\displaystyle{ \Delta_j }[/math] can be expanded in
cylindrical eigenfunctions,
[math]\displaystyle{ (basisrep_in)
\phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
\infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
\theta_j}
+ \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta}
\sin \eta z \big) \sum_{\mu = -
\infty}^{\infty} D_{\mu}^j (\eta) I_\mu (\eta r_j) \mathrm{e}^{\mathrm{i}\mu
\theta_j} \mathrm{d}\eta,
}[/math]
where the coefficients [math]\displaystyle{ D_{0 \mu}^j }[/math] for the propagating modes are
discrete and the coefficients [math]\displaystyle{ D_{\mu}^j (\cdot) }[/math] for the decaying
modes are functions. [math]\displaystyle{ J_\mu }[/math] and [math]\displaystyle{ I_\mu }[/math] are the Bessel function and
the modified Bessel function respectively, both of the first kind and
order [math]\displaystyle{ \mu }[/math]. To simplify the notation, from now on [math]\displaystyle{ \psi(z,\eta) }[/math] will
denote the vertical eigenfunctions corresponding to the decaying modes,
[math]\displaystyle{
\psi(z,\eta) = \cos \eta z + \alpha / \eta \, \sin \eta z.
}[/math]
The interaction in water of infinite depth
The scattered potential [math]\displaystyle{ \phi_j^{\mathrm{S}} }[/math] of body [math]\displaystyle{ \Delta_j }[/math] needs to be
represented in terms of the incident potential [math]\displaystyle{ \phi_l^{\mathrm{I}} }[/math]
upon [math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ j \neq l }[/math]. From figure
(fig:floe_tri) we can see that this can be accomplished by using
Graf's addition theorem for Bessel functions given in
Abramowitz and Stegun 1964,
[math]\displaystyle{ (transf)
\begin{matrix} (transf_h)
H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &=
\sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
\quad j \neq l,\\
(transf_k)
K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &= \sum_{\mu = -
\infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
\end{matrix}
}[/math]
which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math]. This limitation
only requires that the escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does
not enclose any other origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]). However, the
expansion of the scattered and incident potential in cylindrical
eigenfunctions is only valid outside the escribed cylinder of each
body. Therefore the condition that the
escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does not enclose any other
origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]) is superseded by the more rigorous
restriction that the escribed cylinder of each body may not contain any
other body. Making use of the equations (transf)
the scattered potential of [math]\displaystyle{ \Delta_j }[/math] can be expressed in terms of the
incident potential upon [math]\displaystyle{ \Delta_l }[/math],
[math]\displaystyle{ \begin{matrix}
\phi_j^{\mathrm{S}} (r_l,\theta_l,z) &=
\mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
\sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
\vartheta_{jl}}\\
& \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
\infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
(-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
\theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta\\
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
\infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
(\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
\Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
(\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
\vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
\end{matrix} }[/math]
The ambient incident wavefield [math]\displaystyle{ \phi^{\mathrm{In}} }[/math] can also be
expanded in the eigenfunctions corresponding to the incident wavefield upon
[math]\displaystyle{ \Delta_l }[/math] (cf. the example in Cylindrical Eigenfunction Expansion). Let [math]\displaystyle{ D_{l0\mu}^{\mathrm{In}} }[/math] denote the coefficients of this
ambient incident wavefield corresponding to the propagating modes and
[math]\displaystyle{ D_{l\mu}^{\mathrm{In}} (\cdot) }[/math] denote the coefficients functions
corresponding to the decaying modes (which are identically zero) of
the incoming eigenfunction expansion for [math]\displaystyle{ \Delta_l }[/math]. The total
incident wavefield upon body [math]\displaystyle{ \Delta_j }[/math] can now be expressed as
[math]\displaystyle{ \begin{matrix}
&\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
\sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
(r_l,\theta_l,z)\\
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
(\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
-\infty}^{\infty} \Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
\sum_{j=1,j \neq l}^{N} \sum_{\nu =
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
\mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
\end{matrix} }[/math]
The coefficients of the total incident potential upon [math]\displaystyle{ \Delta_l }[/math] are
therefore given by
[math]\displaystyle{ (inc_coeff)
D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}
+ \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
H_{\nu-\mu}^{(1)}
(\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
(\nu - \mu) \vartheta_{jl}}
}[/math]
[math]\displaystyle{
D_{\mu}^l(\eta) = D_{l\mu}^{\mathrm{In}}(\eta) +
\sum_{j=1,j \neq l}^{N} \sum_{\nu =
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}.
}[/math]
In general, it is possible to relate the total incident and scattered
partial waves for any body through the diffraction characteristics of
that body in isolation. There exist diffraction transfer operators
[math]\displaystyle{ B_l }[/math] that relate the coefficients of the incident and scattered
partial waves, such that
[math]\displaystyle{ (eq_B)
A_l = B_l (D_l), \quad l=1, \ldots, N,
}[/math]
where [math]\displaystyle{ A_l }[/math] are the scattered modes due to the incident modes [math]\displaystyle{ D_l }[/math].
In the case of a countable number of modes, (i.e. when
the depth is finite), [math]\displaystyle{ B_l }[/math] is an infinite dimensional matrix. When
the modes are functions of a continuous variable (i.e. infinite
depth), [math]\displaystyle{ B_l }[/math] is the kernel of an integral operator.
For the propagating and the decaying modes respectively, the scattered
potential can be related by diffraction transfer operators acting in the
following ways,
[math]\displaystyle{ (diff_op)
\begin{matrix}
A_{0\nu}^l &= \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,\\
A_\nu^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
\sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
D_{\mu}^l (\xi) \mathrm{d}\xi.
\end{matrix}
}[/math]
The superscripts [math]\displaystyle{ \mathrm{p} }[/math] and [math]\displaystyle{ \mathrm{d} }[/math] are used to distinguish
between propagating and decaying modes, the first superscript denotes the kind
of scattered mode, the second one the kind of incident mode.
If the diffraction transfer operators are known (their calculation
will be discussed later), the substitution of
equations (inc_coeff) into equations (diff_op) give the
required equations to determine the coefficients and coefficient
functions of the scattered wavefields of all bodies,
[math]\displaystyle{ (eq_op)
\begin{matrix}
A_{0n}^l =& \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}
\Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
(\nu - \mu) \vartheta_{jl}} \Big]\\
&+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
\sum_{j=1,j \neq l}^{N} \sum_{\nu =
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,\\
A_n^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
B_{ln\mu}^\mathrm{dp} (\eta) \Big[
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
(\nu - \mu) \vartheta_{jl}}\Big]\\
& + \int\limits_{0}^{\infty}
\sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
\Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
\sum_{j=1,j \neq l}^{N} \sum_{\nu =
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
\end{matrix}
}[/math]
[math]\displaystyle{ n \in \mathit{Z},\, l = 1, \ldots, N }[/math]. It has to be noted that all
equations are coupled so that it is necessary to solve for all
scattered coefficients and coefficient functions simultaneously.
For numerical calculations, the infinite sums have to be truncated and
the integrals must be discretised. Implying a suitable truncation, the
four different diffraction transfer operators can be represented by
matrices which can be assembled in a big matrix [math]\displaystyle{ \mathbf{B}_l }[/math],
[math]\displaystyle{
\mathbf{B}_l = \left[
\begin{matrix}{cc} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
\mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
\end{matrix} \right],
}[/math]
the infinite depth diffraction transfer matrix.
Truncating the coefficients accordingly, defining [math]\displaystyle{ {\mathbf a}^l }[/math] to be the
vector of the coefficients of the scattered potential of body
[math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ \mathbf{d}_l^{\mathrm{In}} }[/math] to be the vector of
coefficients of the ambient wavefield, and making use of a coordinate
transformation matrix [math]\displaystyle{ {\mathbf T}_{jl} }[/math] given by
[math]\displaystyle{ (T_elem_deep)
({\mathbf T}_{jl})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
\vartheta_{jl}}
}[/math]
for the propagating modes, and
[math]\displaystyle{
({\mathbf T}_{jl})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
(p-q) \vartheta_{jl}}
}[/math]
for the decaying modes, a linear system of equations
for the unknown coefficients follows from equations (eq_op),
[math]\displaystyle{ (eq_Binf)
{\mathbf a}_l =
{\mathbf {B}}_l \Big(
{\mathbf d}_l^{\mathrm{In}} +
\sum_{j=1,j \neq l}^{N} trans {\mathbf T}_{jl} \,
{\mathbf a}_j \Big), \quad l=1, \ldots, N,
}[/math]
where the left superscript [math]\displaystyle{ \mathrm{t} }[/math] indicates transposition.
The matrix [math]\displaystyle{ {\mathbf \hat{B}}_l }[/math] denotes the infinite depth diffraction
transfer matrix [math]\displaystyle{ {\mathbf B}_l }[/math] in which the elements associated with
decaying scattered modes have been multiplied with the appropriate
integration weights depending on the discretisation of the continuous variable.
The diffraction transfer matrix of rotated bodies
For a non-axisymmetric body, a rotation about the mean
centre position in the [math]\displaystyle{ (x,y) }[/math]-plane will result in a
different diffraction transfer matrix. We will show how the
diffraction transfer matrix of a body rotated by an angle [math]\displaystyle{ \beta }[/math] can
be easily calculated from the diffraction transfer matrix of the
non-rotated body. The rotation of the body influences the form of the
elements of the diffraction transfer matrices in two ways. Firstly, the
angular dependence in the integral over the immersed surface of the
body is altered and, secondly, the source strength distribution
function is different if the body is rotated. However, the source
strength distribution function of the rotated body can be obtained by
calculating the response of the non-rotated body due to rotated
incident potentials. It will be shown that the additional angular
dependence can be easily factored out of the elements of the
diffraction transfer matrix.
The additional angular dependence caused by the rotation of the
incident potential can be factored out of the normal derivative of the
incident potential such that
[math]\displaystyle{
\frac{\partial \phi_{q\beta}^{\mathrm{I}}}{\partial n} =
\frac{\partial \phi_{q}^{\mathrm{I}}}{\partial n}
\mathrm{e}^{\mathrm{i}q \beta},
}[/math]
where [math]\displaystyle{ \phi_{q\beta}^{\mathrm{I}} }[/math] is the rotated incident potential.
Since the integral equation for the determination of the source
strength distribution function is linear, the source strength
distribution function due to the rotated incident potential is thus just
given by
[math]\displaystyle{
\varsigma_{q\beta}^j = \varsigma_q^j \, \mathrm{e}^{\mathrm{i}q \beta}.
}[/math]
This is also the source strength distribution function of the rotated
body due to the standard incident modes.
The elements of the diffraction transfer matrix [math]\displaystyle{ \mathbf{B}_j }[/math] are
given by equations (B_elem). Keeping in mind that the body is
rotated by the angle [math]\displaystyle{ \beta }[/math], the elements of the diffraction transfer
matrix of the rotated body are given by
[math]\displaystyle{ (B_elemrot)
(\mathbf{B}_j^\beta)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
\mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p (\varphi+\beta)}
\varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
}[/math]
and
[math]\displaystyle{
(\mathbf{B}_j^\beta)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
\alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
(\varphi+\beta)} \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
}[/math]
for the propagating and decaying modes respectively.
Thus the additional angular dependence caused by the rotation of
the body can be factored out of the elements of the diffraction
transfer matrix. The elements of the diffraction transfer matrix
corresponding to the body rotated by the angle [math]\displaystyle{ \beta }[/math],
[math]\displaystyle{ \mathbf{B}_j^\beta }[/math], are given by
[math]\displaystyle{ (B_rot)
(\mathbf{B}_j^\beta)_{pq} = (\mathbf{B}_j)_{pq} \, \mathrm{e}^{\mathrm{i}(q-p) \beta}.
}[/math]
As before, [math]\displaystyle{ (\mathbf{B})_{pq} }[/math] is understood to be the element of
[math]\displaystyle{ \mathbf{B} }[/math] which corresponds to the coefficient of the [math]\displaystyle{ p }[/math]th scattered
mode due to a unit-amplitude incident wave of mode [math]\displaystyle{ q }[/math]. Equation (B_rot) applies to
propagating and decaying modes likewise.