Two Semi-Infinite Elastic Plates of Identical Properties: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
They first define <math>\chi(x,z)</math> to be the Two-Dimensional solution to the [[Free-Surface Green Function for a Floating Elastic Plate]] | They first define <math>\chi(x,z)</math> to be the Two-Dimensional solution to the [[Free-Surface Green Function for a Floating Elastic Plate]] | ||
given by | given by | ||
<center> | |||
<math> | <math> | ||
\chi(x,z) = -i\sum_{n=-2}^\infty\frac{\sin{(k_n h)}\cos{(k(n)(z-h))}}{2\alpha C_n}e^{-k_n|x|},\,\,\,(1) | \chi(x,z) = -i\sum_{n=-2}^\infty\frac{\sin{(k_n h)}\cos{(k(n)(z-h))}}{2\alpha C_n}e^{-k_n|x|},\,\,\,(1) | ||
</math> | </math></center> | ||
where | where | ||
<center> | |||
<math> | <math> | ||
C_n=\frac{1}{2}\left(h + \frac{(5\beta k_n ^4 + 1 - \alpha\gamma)\sin^2{(k_n h)}}{\alpha}\right), | C_n=\frac{1}{2}\left(h + \frac{(5\beta k_n ^4 + 1 - \alpha\gamma)\sin^2{(k_n h)}}{\alpha}\right), | ||
</math> | </math> | ||
</center> | |||
and <math>k_n</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]]. | and <math>k_n</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]]. | ||
Consequently, the source functions for a single crack at <math>x=0</math> can be defined as | Consequently, the source functions for a single crack at <math>x=0</math> can be defined as | ||
<center> | |||
<math> | <math> | ||
\psi_s(x,z)= \beta\chi_{xx}(x,z),\,\,\, | \psi_s(x,z)= \beta\chi_{xx}(x,z),\,\,\, | ||
\psi_a(x,z)= \beta\chi_{xxx}(x,z),\,\,\,(2) | \psi_a(x,z)= \beta\chi_{xxx}(x,z),\,\,\,(2) | ||
</math> | </math> | ||
</center> | |||
It can easily be shown that <math>\psi_s</math> is symmetric about <math>x = 0</math> and | It can easily be shown that <math>\psi_s</math> is symmetric about <math>x = 0</math> and | ||
<math>\psi_a</math> is antisymmetric about <math>x = 0</math>. | <math>\psi_a</math> is antisymmetric about <math>x = 0</math>. | ||
Substituting (1) into (2) gives | Substituting (1) into (2) gives | ||
<center> | |||
<math> | <math> | ||
\psi_s(x,z)= | \psi_s(x,z)= | ||
Line 43: | Line 42: | ||
\frac{g_n'\cos{(k_n(z+h))}}{2k_{xn}C_n}e^{k_n|x|}}, | \frac{g_n'\cos{(k_n(z+h))}}{2k_{xn}C_n}e^{k_n|x|}}, | ||
</math> | </math> | ||
</center> | |||
where | where | ||
<center> | |||
<math> | <math> | ||
g_n = ik_n^3 \sin{k_n h},\,\,\,\, | g_n = ik_n^3 \sin{k_n h},\,\,\,\, | ||
g'_n= -k_n^4 \sin{k_n h}. | g'_n= -k_n^4 \sin{k_n h}. | ||
</math> | </math> | ||
</center> | |||
We then express the solution to the problem as a linear combination of the | We then express the solution to the problem as a linear combination of the | ||
incident wave and pairs of source functions at each crack, | incident wave and pairs of source functions at each crack, | ||
<center> | |||
<math> | <math> | ||
\phi(x,z) = | \phi(x,z) = | ||
Line 59: | Line 58: | ||
+ (P\psi_s(x,z) + Q\psi_a(x,z))\,\,\,(3) | + (P\psi_s(x,z) + Q\psi_a(x,z))\,\,\,(3) | ||
</math> | </math> | ||
</center> | |||
where <math>P</math> and <math>Q</math> are coefficients to be solved which represent the jump in the gradient | where <math>P</math> and <math>Q</math> are coefficients to be solved which represent the jump in the gradient | ||
and elevation respectively of the plates across the crack <math>x = a_j</math>. | and elevation respectively of the plates across the crack <math>x = a_j</math>. | ||
The coefficients <math>P</math> and <math>Q</math> are found by applying the edge conditions and to | The coefficients <math>P</math> and <math>Q</math> are found by applying the edge conditions and to | ||
the <math>z</math> derivative of <math>\phi</math> at <math>z=0</math>, | the <math>z</math> derivative of <math>\phi</math> at <math>z=0</math>, | ||
<center> | |||
<math> | <math> | ||
\frac{\partial^2}{\partial x^2}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0,\,\,\, | \frac{\partial^2}{\partial x^2}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0,\,\,\, | ||
Line 70: | Line 69: | ||
\frac{\partial^3}{\partial x^3}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0. | \frac{\partial^3}{\partial x^3}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0. | ||
</math> | </math> | ||
</center> | |||
The reflection and transmission coefficients, <math>R</math> and <math>T</math> can be found from (3) | The reflection and transmission coefficients, <math>R</math> and <math>T</math> can be found from (3) | ||
by taking the limits as <math>x\rightarrow\pm\infty</math> to obtain | by taking the limits as <math>x\rightarrow\pm\infty</math> to obtain | ||
<center> | |||
<math> | <math> | ||
R = {- \frac{\beta}{\alpha} | R = {- \frac{\beta}{\alpha} | ||
(g'_0Q + ig_0P)} | (g'_0Q + ig_0P)} | ||
</math> | </math> | ||
</center> | |||
and | and | ||
<center> | |||
<math> | <math> | ||
T= 1 + {\frac{\beta}{\alpha}(g'_0Q - ig_0P)} | T= 1 + {\frac{\beta}{\alpha}(g'_0Q - ig_0P)} | ||
</math> | </math> | ||
</center> | |||
[[Category:Floating Elastic Plate]] | [[Category:Floating Elastic Plate]] |
Revision as of 10:24, 22 August 2006
We present here the solution of Evans and Porter 2005 for the simple case of a single crack with waves incident from normal (they also considered multiple cracks and waves incident from different angles). The solution of Evans and Porter 2005 expresses the potential [math]\displaystyle{ \phi }[/math] in terms of a linear combination of the incident wave and certain source functions located at the crack. Along with satisfying the field and boundary conditions, these source functions satisfy the jump conditions in the displacements and gradients across the crack. They first define [math]\displaystyle{ \chi(x,z) }[/math] to be the Two-Dimensional solution to the Free-Surface Green Function for a Floating Elastic Plate given by
where
[math]\displaystyle{ C_n=\frac{1}{2}\left(h + \frac{(5\beta k_n ^4 + 1 - \alpha\gamma)\sin^2{(k_n h)}}{\alpha}\right), }[/math]
and [math]\displaystyle{ k_n }[/math] are the solutions of the Dispersion Relation for a Floating Elastic Plate.
Consequently, the source functions for a single crack at [math]\displaystyle{ x=0 }[/math] can be defined as
[math]\displaystyle{ \psi_s(x,z)= \beta\chi_{xx}(x,z),\,\,\, \psi_a(x,z)= \beta\chi_{xxx}(x,z),\,\,\,(2) }[/math]
It can easily be shown that [math]\displaystyle{ \psi_s }[/math] is symmetric about [math]\displaystyle{ x = 0 }[/math] and [math]\displaystyle{ \psi_a }[/math] is antisymmetric about [math]\displaystyle{ x = 0 }[/math].
Substituting (1) into (2) gives
[math]\displaystyle{ \psi_s(x,z)= { -\frac{\beta}{\alpha} \sum_{n=-2}^\infty \frac{g_n\cos{(k_n(z+h))}}{2k_{xn}C_n}e^{k_n|x|} }, \psi_a(x,z)= { {\rm sgn}(x) i\frac{\beta}{\alpha}\sum_{n=-2}^\infty \frac{g_n'\cos{(k_n(z+h))}}{2k_{xn}C_n}e^{k_n|x|}}, }[/math]
where
[math]\displaystyle{ g_n = ik_n^3 \sin{k_n h},\,\,\,\, g'_n= -k_n^4 \sin{k_n h}. }[/math]
We then express the solution to the problem as a linear combination of the incident wave and pairs of source functions at each crack,
[math]\displaystyle{ \phi(x,z) = e^{-k_0 x}\frac{\cos(k_0(z+h))}{\cos(k_0h)} + (P\psi_s(x,z) + Q\psi_a(x,z))\,\,\,(3) }[/math]
where [math]\displaystyle{ P }[/math] and [math]\displaystyle{ Q }[/math] are coefficients to be solved which represent the jump in the gradient and elevation respectively of the plates across the crack [math]\displaystyle{ x = a_j }[/math]. The coefficients [math]\displaystyle{ P }[/math] and [math]\displaystyle{ Q }[/math] are found by applying the edge conditions and to the [math]\displaystyle{ z }[/math] derivative of [math]\displaystyle{ \phi }[/math] at [math]\displaystyle{ z=0 }[/math],
[math]\displaystyle{ \frac{\partial^2}{\partial x^2}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0,\,\,\, {\rm and}\,\,\,\, \frac{\partial^3}{\partial x^3}\left. \frac{\partial \phi}{\partial z}\right|_{x=0,z=0}=0. }[/math]
The reflection and transmission coefficients, [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] can be found from (3) by taking the limits as [math]\displaystyle{ x\rightarrow\pm\infty }[/math] to obtain
[math]\displaystyle{ R = {- \frac{\beta}{\alpha} (g'_0Q + ig_0P)} }[/math]
and
[math]\displaystyle{ T= 1 + {\frac{\beta}{\alpha}(g'_0Q - ig_0P)} }[/math]