Conservation Laws and Boundary Conditions: Difference between revisions

From WikiWaves
Jump to navigationJump to search
Syan077 (talk | contribs)
No edit summary
Syan077 (talk | contribs)
No edit summary
Line 1: Line 1:
The Ocean Environment
==The Ocean Environment


Non Linear Free-surface Condition
===Non Linear Free-surface Condition


(X,Y,Z): Earth Fixed Coordinate System  
<math>\bullet (X,Y,Z)</math>: Earth Fixed Coordinate System \br
X: Fixed Eulerian Vector
<math>\vec X</math>: Fixed Eulerian Vector
v: Flow Velocity Vector At X
<math>\vec V</math>: Flow Velocity Vector at <math>\vec X</math>
: Free Surface Elevation
<math>\zeta</math>: Free Surface Elevation


Assume ideal fluid (No shear stresses) and irrotational flow:
Assume ideal fluid (No shear stresses) and irrotational flow:
Line 28: Line 28:


<center><math> \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} </math></center>
<center><math> \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} </math></center>
<math>\bullet</math> Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.

Revision as of 05:27, 17 January 2007

==The Ocean Environment

===Non Linear Free-surface Condition

[math]\displaystyle{ \bullet (X,Y,Z) }[/math]: Earth Fixed Coordinate System \br [math]\displaystyle{ \vec X }[/math]: Fixed Eulerian Vector [math]\displaystyle{ \vec V }[/math]: Flow Velocity Vector at [math]\displaystyle{ \vec X }[/math] [math]\displaystyle{ \zeta }[/math]: Free Surface Elevation

Assume ideal fluid (No shear stresses) and irrotational flow:

[math]\displaystyle{ \nabla \times \overrightarrow{V} = 0 }[/math]

Let:

[math]\displaystyle{ \overrightarrow{V} = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 }[/math]

Where [math]\displaystyle{ \Phi(\overrightarrow{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.

Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.

Conservation of mass:

[math]\displaystyle{ \nabla \cdot \overrightarrow{V} = 0 \Rightarrow }[/math]


[math]\displaystyle{ \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 }[/math]

or

[math]\displaystyle{ \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} }[/math]

[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.