Conservation Laws and Boundary Conditions: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The Ocean Environment | ==The Ocean Environment | ||
Non Linear Free-surface Condition | ===Non Linear Free-surface Condition | ||
(X,Y,Z): Earth Fixed Coordinate System | <math>\bullet (X,Y,Z)</math>: Earth Fixed Coordinate System \br | ||
X: Fixed Eulerian Vector | <math>\vec X</math>: Fixed Eulerian Vector | ||
<math>\vec V</math>: Flow Velocity Vector at <math>\vec X</math> | |||
: Free Surface Elevation | <math>\zeta</math>: Free Surface Elevation | ||
Assume ideal fluid (No shear stresses) and irrotational flow: | Assume ideal fluid (No shear stresses) and irrotational flow: | ||
Line 28: | Line 28: | ||
<center><math> \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} </math></center> | <center><math> \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} </math></center> | ||
<math>\bullet</math> Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity. |
Revision as of 05:27, 17 January 2007
==The Ocean Environment
===Non Linear Free-surface Condition
[math]\displaystyle{ \bullet (X,Y,Z) }[/math]: Earth Fixed Coordinate System \br [math]\displaystyle{ \vec X }[/math]: Fixed Eulerian Vector [math]\displaystyle{ \vec V }[/math]: Flow Velocity Vector at [math]\displaystyle{ \vec X }[/math] [math]\displaystyle{ \zeta }[/math]: Free Surface Elevation
Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\overrightarrow{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.