Conservation Laws and Boundary Conditions: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==The Ocean Environment | == The Ocean Environment | ||
===Non Linear Free-surface Condition | === Non Linear Free-surface Condition | ||
<math>\bullet (X,Y,Z) | <math> | ||
\begin{matrix} | |||
&\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ | |||
&\vec X &: &\mbox{Fixed Eulerian Vector} \\ | |||
&\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ | |||
&\zeta &: &\mbox{Free Surface Elevation} | |||
\end{matrix} </math> | |||
Assume ideal fluid (No shear stresses) and irrotational flow: | <math>\bullet</math> Assume ideal fluid (No shear stresses) and irrotational flow: | ||
<center><math>\nabla \times \ | <center><math>\nabla \times \vec V = 0</math></center> | ||
Let: | Let: | ||
<center><math> \ | <center><math> | ||
\vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 | |||
</math></center> | |||
Where <math>\Phi(\ | Where <math>\Phi(\vec{X},t)</math> is the velocity potential assumed sufficiently continuously differentiable. | ||
Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted. | <math>\bullet</math> Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted. | ||
Conservation of mass: | <math>\bullet</math> Conservation of mass: | ||
<center><math> \nabla \cdot \ | <center><math> \nabla \cdot \vec V = 0 \Rightarrow </math></center> | ||
Revision as of 05:44, 17 January 2007
== The Ocean Environment
=== Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.