Template:Separation of variables for a submerged dock: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
The depth above the plate is <math>d</math> and below the plate is <math>h-d</math>. We now introduce
The depth above the plate is <math>d</math> and below the plate is <math>h-d</math>. We now introduce
a new dispersion value <math>\mu_m</math> which is either <math>k_n^{d}</math>
where <math>k_0^{d}</math> are the roots of the [[Dispersion Relation for a Free Surface ]] with depth <math>d</math>
for <math>0 \leq n \leq N-M </math> or <math>n\pi/(h-d)</math> for <math>n</math> and integer.
We also order the roots with the first the positive imaginary solution <math>k_0^{d}</math> and
the second being zero, then order by increasing size. We then define a new function
a new function
a new function
<center>
<center>
Line 10: Line 15:
</math>
</math>
</center>
</center>
for <math>0 \leq n \leq M - 1 </math>
or
<center>
<center>
<math>
<math>
\chi_{n+M} =  
\chi_{n} =  
\begin{cases}
\begin{cases}
0,\,\,\,-h<z<-d \\
0,\,\,\,-h<z<-d \\
Line 26: Line 31:
</math>
</math>
</center>
</center>
where <math>k^{d}</math> is the roots of the [[Free Surface Dispersion Equation]] with depth <math>d</math>
depending on whether the root <math>\mu_n</math> is above or below.
for <math>0 \leq n \leq N-M </math>
 
and we choose the values of <math>N</math> so that we have the <math>N+1</math> smallest values
and we choose the values of <math>N</math> so that we have the <math>N+1</math> smallest values
of <math>k_n</math> and <math>\kappa_n</math> (with the proviso that we have at least one from each).
of <math>k_n</math> and <math>\kappa_n</math> (with the proviso that we have at least one from each).

Revision as of 11:03, 7 September 2008

The depth above the plate is [math]\displaystyle{ d }[/math] and below the plate is [math]\displaystyle{ h-d }[/math]. We now introduce a new dispersion value [math]\displaystyle{ \mu_m }[/math] which is either [math]\displaystyle{ k_n^{d} }[/math] where [math]\displaystyle{ k_0^{d} }[/math] are the roots of the Dispersion Relation for a Free Surface with depth [math]\displaystyle{ d }[/math] for [math]\displaystyle{ 0 \leq n \leq N-M }[/math] or [math]\displaystyle{ n\pi/(h-d) }[/math] for [math]\displaystyle{ n }[/math] and integer. We also order the roots with the first the positive imaginary solution [math]\displaystyle{ k_0^{d} }[/math] and the second being zero, then order by increasing size. We then define a new function a new function

[math]\displaystyle{ \chi_n = \begin{cases} \psi_{n}(z),\,\,\,-h\lt z\lt -d \\ 0,\,\,\,-d\lt z\lt 0 \end{cases} }[/math]

or

[math]\displaystyle{ \chi_{n} = \begin{cases} 0,\,\,\,-h\lt z\lt -d \\ \phi_{n}^{d}(z),\,\,\,-d\lt z\lt 0 \end{cases} }[/math]

where

[math]\displaystyle{ \phi_{m}^{d}\left( z\right) =\frac{\cos k_{m}^{d}(z+d)}{\cos k_{m}^{d}d},\quad m\geq0 }[/math]

depending on whether the root [math]\displaystyle{ \mu_n }[/math] is above or below.

and we choose the values of [math]\displaystyle{ N }[/math] so that we have the [math]\displaystyle{ N+1 }[/math] smallest values of [math]\displaystyle{ k_n }[/math] and [math]\displaystyle{ \kappa_n }[/math] (with the proviso that we have at least one from each).