Sommerfeld Radiation Condition: Difference between revisions

From WikiWaves
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
outgoing at infinity. It depends on the convention regarding  
outgoing at infinity. It depends on the convention regarding whether the time dependence
 
is <math>\exp (i\omega t)\,</math> or <math>\exp (-i\omega t)\,</math>
Assuming the former (which is the standard convention on this wiki)
In two-dimensions the condition is  
In two-dimensions the condition is  
 
<center>
<math>
<math>
\left(  \frac{\partial}{\partial|x|}-{i}k\right)
\left(  \frac{\partial}{\partial|x|}+{i}k\right)
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
</math>
</math>
 
</center>
where <math>\phi^{\mathrm{{In}}}</math> is the incident potential and <math>k</math>
where <math>\phi^{\mathrm{{In}}}</math> is the incident potential and <math>k</math>
is the wave number.
is the wave number.


In three-dimensions the condition is  
In three-dimensions the condition is  
<center>
<math>
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right)
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
</math>
</center>


If the time dependence is assumed to be <math>\exp (-i\omega t)\,</math> then we
have in two-dimensions
<center>
<math>
\left(  \frac{\partial}{\partial|x|}-{i}k\right)
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
</math>
</center>
and in three-dimensions
<center>
<math>
<math>
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
</math>
</math>
</center>


[[Category:Linear Water-Wave Theory]]
[[Category:Linear Water-Wave Theory]]

Revision as of 23:48, 10 September 2008

This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math] Assuming the former (which is the standard convention on this wiki) In two-dimensions the condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.

In three-dimensions the condition is

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]

If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math] then we have in two-dimensions

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

and in three-dimensions

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]