Boundary Element Method for a Fixed Body in Finite Depth
Introduction
We show how to solve for the wave scattering by a rigid body in constant Finite Depth using the Boundary Element Method.
Equations
The Standard Linear Wave Scattering Problem in Finite Depth for a fixed body is
(note that the last expression can be obtained from combining the expressions:
where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math]) The body boundary condition for a rigid body is just
The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,
where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and
In two-dimensions the Sommerfeld Radiation Condition is
where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.
Solution Method
We divide the domain into three regions, [math]\displaystyle{ x\lt -l }[/math], [math]\displaystyle{ x\gt r }[/math], and [math]\displaystyle{ -l\lt x\lt r }[/math] so that the body surface is entirely in the finite region.
Solution in the finite region
We use the Boundary Element Method in the finite region.
Solution in the Semi-infinite Domains
We now solve Laplace's equation in the semi-infinite domains [math]\displaystyle{ \Omega ^{-}=\left\{ x\lt -l,\;-h\leq z\leq 0\right\} }[/math] and [math]\displaystyle{ \Omega ^{+}=\left\{ x\gt r,\;-h\leq z\leq 0\right\} }[/math]. Since the water depth is constant in these regions we can solve Laplace's equation by separation of variables. The potential in the region [math]\displaystyle{ \Omega ^{-} }[/math] satisfies the following equation
where [math]\displaystyle{ \mathbf{x}=\left( x,z\right) \ }[/math]and [math]\displaystyle{ \tilde{\phi}\left( z\right) }[/math] is an arbitrary continuous function[math]\displaystyle{ . }[/math] Our aim is to find the outward normal derivative of the potential on [math]\displaystyle{ x=-l }[/math] as a function of [math]\displaystyle{ \tilde{\phi}\left( z\right) }[/math].
Separation of variables for a free surface
We use separation of variables
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
The separation of variables equation for deriving free surface eigenfunctions is as follows:
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]
We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:
which is the Dispersion Relation for a Free Surface
The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations
[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]
to arrive at the dispersion relation
[math]\displaystyle{ \alpha = k\tanh kh. }[/math]
We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].
Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as
[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]
Expansion of the potential
This gives us the following expression for the potential in the region [math]\displaystyle{ \Omega ^{-}, }[/math]
We define [math]\displaystyle{ \mathbf{Q}_{1} }[/math] as
Similarly, we now consider the potential in the region [math]\displaystyle{ \Omega ^{+} }[/math] which satisfies
Solving by separation of variables as before we obtain
where the outward normal is with respect to the [math]\displaystyle{ \Omega }[/math] domain. The integral operator [math]\displaystyle{ \mathbf{Q}_{2} }[/math] is given by