Template:Separation of variables in cylindrical coordinates in finite depth
From WikiWaves
The solution of the problem for the potential in finite water depth can be found by a separation ansatz,
[math]\displaystyle{ \phi (r,\theta,z) =: Y(r,\theta) Z(z).\, }[/math]
Substituting this into the equation for [math]\displaystyle{ \phi }[/math] yields
[math]\displaystyle{ \frac{1}{Y(r,\theta)} \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} \right] = - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = k^2. }[/math]
The possible separation constants [math]\displaystyle{ k }[/math] will be determined by the free surface condition and the bed condition.